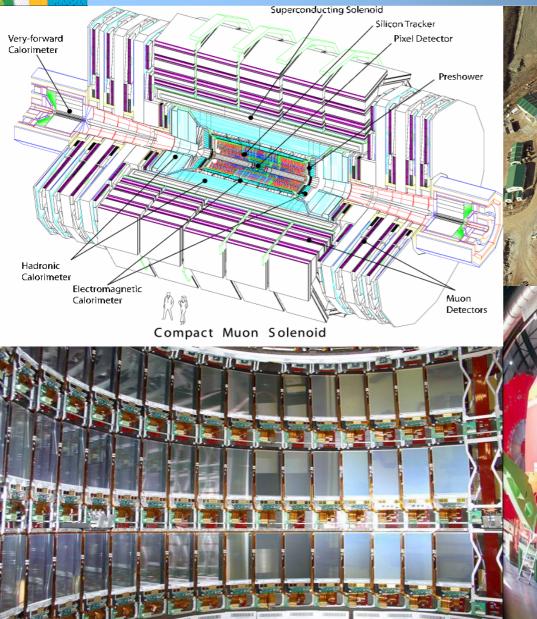


The CMS analysis chain in a distributed environment


Nicola De Filippis

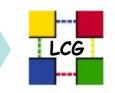
on behalf of the CMS collaboration

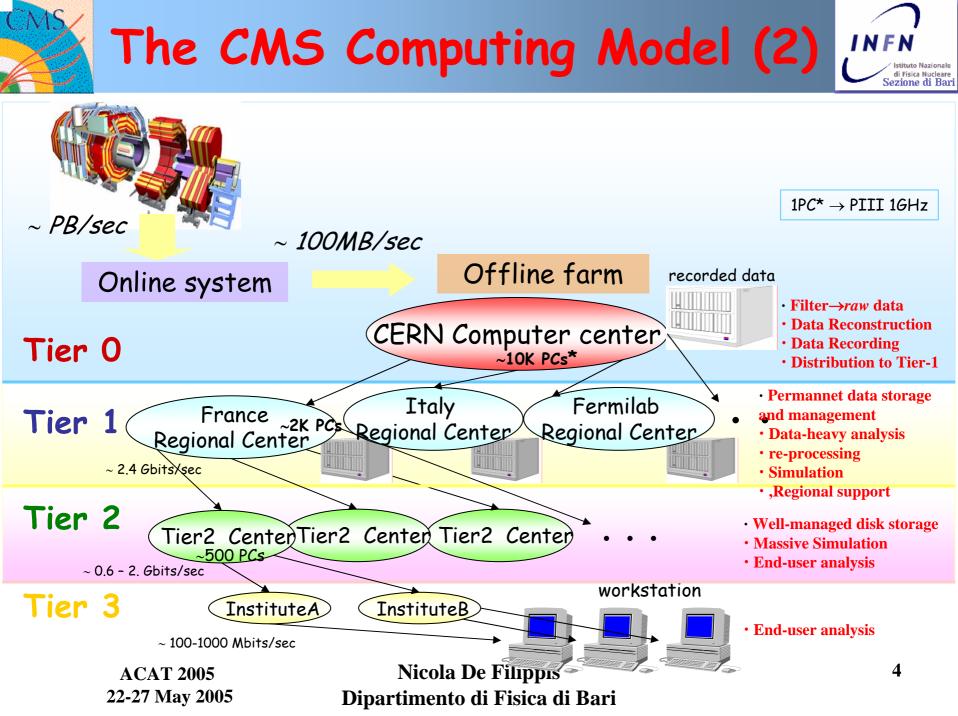
The CMS experiment

INFN

Istituto Nazionale di Fisica Nucleare Sezione di Bari

The CMS Computing Model (1)

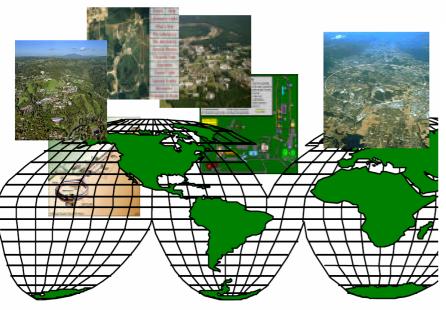

The CMS collaboration is making a big effort:


- to define the analysis model
- to develop software tools with the purpose of analyzing
 - several millions of simulated data
 - PetaBytes of real data per year
 - by a large number of people in many geografically distributed sites.

Problems to be faced out:

- large scale distributed computing and data access
- efficient data movement and validation chain
- reliable batch analysis processing
- definition of local and global policies to use the resources

The distributed architecture is one possible solution



CMS

The CMS Computing Model (3)

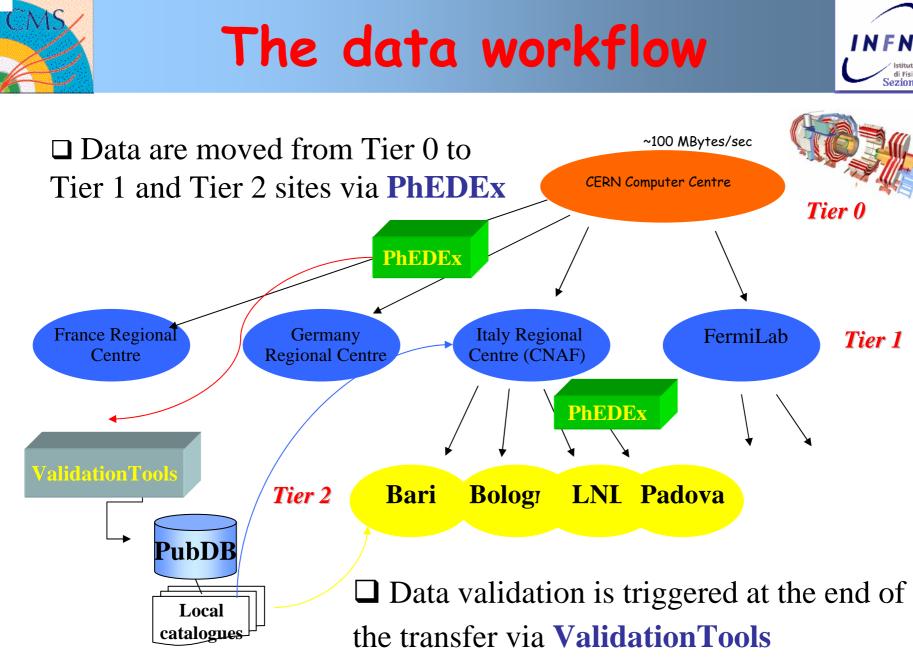
CMS is collaborating with many Grid projects to explore the maturity and availability of middleware: *LHC Computing Grid (LCG)*, based on EU middleware *Open Science Grid (OSG)*, Grid infrastructure in the US

Main components of the LCG Middleware:

- Virtual Organizations (cms,atlas,ecc.)
- Resource Broker (RB)
- Replica Manager (RLS)
- Computing Elements (CEs)
- Storage Elements (SEs)
- Worker nodes (WNs)
- User Interfaces (UIs)

ACAT 2005 22-27 May 2005 Nicola De Filippis Dipartimento di Fisica di Bari INFN

The CMS analysis tools


Overview:

- Data management
 - Data Transfer service:
 - Data Validation stuff:
 - Data Publication service:

PHEDEX ValidationTools RefDB/PubDB

- Analysis Strategy
 - Distributed Software installation: **XCMSI**
 - Analysis job submission tool: **CRAB**
- Job Monitoring
 - System monitoring:
 - application job monitoring:

BOSS JAM

ACAT 2005 22-27 May 2005 Data are published in the local **PubDB**

di Fisica Nucleare Sezione di Bari

PhEDEx (Physics Experiment Data Export)

PhEDEx is the CMS official tool for data movement/transfer:

Goals:

- Manage the prioritized transfer of files from multiple sources to multiple sinks
- Provide information on cost- latency and rate- of any transfer to enable scheduling **Features:**
- Enables CMS to manage the distribution of data at dataset level rather than at file level
- Bridges the gap between "traditional" and "Grid" data distribution models
 - Traditional \Rightarrow large-scale transfers between large sites, often managed by hand
 - Grid \Rightarrow replication of data in response to user demand

Strategy for data flow:

- Detector data flows to Tier 1 sites
 - Stored safely to tape and undergoes large-scale processing and analysis
- Processed data flows to Tier 2 sites
 - Undergoes small-scale analysis
- Simulation and analysis results flow from Tier 2 sites
 - Cached at Tier 1s

PhEDEx is a stable service at Tier 0, Tier 1 and Tier 2 sites all over the world

- CMS planned to implement a validation hierarchy with multiple steps:
- a) Technical validation for production: which should make file integrity guarantees (checksum, size) and ensure the matching of the information stored in the central database RefDB and that extracted from local files;
- b) Validation of data transfer: transfer validation to ensure the file integrity at the end of a transfer. It is covered up to now by PhEDEx
- c) Validation for analysis at remote sites: which should ensure readyness of data for analysis in remote site. At this step data should be published in local file catalogs or database.
- d) Physics validation: validation of physics content done by Physics groups. It should cover also calibrations validation.

ACAT 2005 22-27 May 2005

Step c): Validation for analysis

Main features:

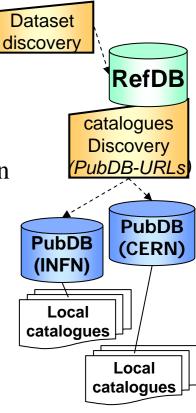
- building of data catalogs for local existing files
- validation of Monte Carlo event samples via CMS analysis codes
- processing of output histograms
- publishing of the validated information and the file catalogs in a local database, PubDB.

Use cases supported:

- the validation of official or "private" datasets in various data formats with different level of consistency check
- remote validation via grid

Implementation: bash and perl scripts with a configuration file + a GUI in perl-Tk

Result: automatization of the technical procedures to be performed by a site manager in a remote site to make data available for analysis users

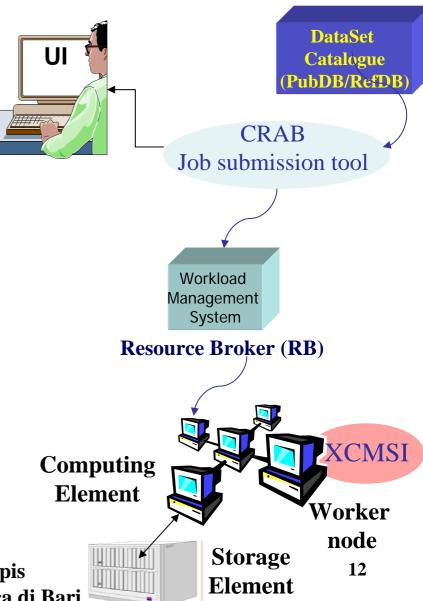

In production: at Italian Tier-1 (CNAF) and at many Tier 2/3s in Europe.

ACAT 2005 22-27 May 2005

PubDB (publication database)

PubDB is a database for the **publishing of data** available for analysis in a site

- Local file catalogues are stored in PubDB together with dataset specific information, the validation status, the total number of validated events, the first and last run...
- Dataset Location: a global map of all datasets catalogues is held in the central database RefDB at CERN through the links to the various PubDBs
- PubDB/RefDB plays the main role in the data discovery system.
- Evolving to a new system with a
 - o Dataset Bookkeeping System which will answer the basic question "Which data exist?"
 - Data Location Service which will allow a CMS user to find replicas of a given set of data in the distributed computing system.



The end-user analysis wokflow

- □ The user provides:
- Dataset (runs,#event,..)
- private code
- CRAB discoveries data and sites hosting them by querying RefDB/PubDB
- CRAB prepares, splits and submits jobs to the Resource Broker
- □ The RB sends jobs at sites hosting the data provided the CMS software was installed
- CRAB retrieves automatically the output files of the the job

ACAT 2005 22-27 May 2005

The CMS software installation: XCMSI

Goal:

To provide complete CMS software environment for development and data analysis

Features:

- Relocatable packages
- Optional network download
- Multi-platform support

- No root privileges required
- Batch mode installable
- Save-able and reusable set-up Included validation procedure
 - Multiple installations possible

In a GRID environment:

Installation done via *ad-hoc* job run by the cms SoftwareManager with privilegies;

🔀 CMS Software Setup @ vgridba1.ba.infn.it								
CMS/	Read Me			<u>R</u> eport Bug			P (CERNIN	
	Show Config	Select Tags	Select Archives	Load Config	Change Config	Save Config	LEWY	
	Options			ί.		Sand Install	·M	
	First Inst	allation	Verify Installation (new)		Universal Development			
	Update Installation		Verify Installation (all)		Uninstall Packages			
	16		Qu	it				
Current Config File: no file loaded			N-821		Architecture: slc3_ia32_gcc323			

13

CRAB (CMS remote analysis builder)

CRAB is a python user-friendly tool for:

- ➢ job preparation, splitting and submission of CMS analysis jobs
- analysing data available at remote sites by using the GRID infrastructure

Features:

- □ User Settings provided via a configuration file (dataset, data type)
- □ Data discovery querying RefDB and PubDB of remote sites
- □ Job splitting performed per events
- GRID details mostly hidden to the user
- □ status monitoring, job tracking and output management of the submitted jobs

Use cases supported:

• Official and private code analysis of published remote data

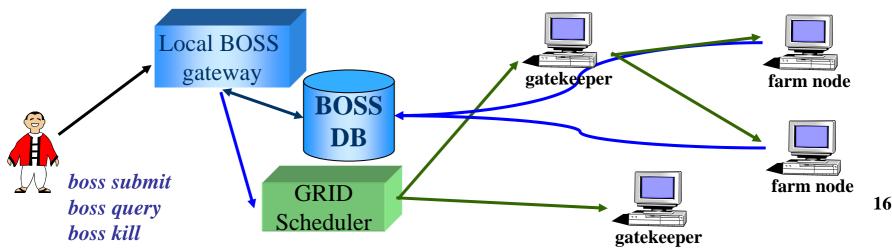
ACAT 2005 22-27 May 2005

CRAB in production

- □ Actively used by **tens** of CMS users, with little or **no** Grid knowledge
- □ Already several physics presentation based on data accessed using CRAB
- □ Successfully used to access from any UI data at Tiers-1 (and some T2s):
 - ≻ FNAL (US)
 - CNAF (Italy)
 - ➢ PIC (Spain)
 - ≻ CERN
 - ≻ FZK (Germany)
 - ➢ IN2P3 (France)
 - ► RAL (UK): still working
 - Tiers-2: Legnaro, Bari, Perugia (Italy)

 \Box Estimated total $O(10^7)$ events analysed via CRAB on a distributed infrastructure

Job monitoring via BOSS


BOSS is a tool for job monitoring, logging and book-keeping

Features:

- □ Allows to deal with job-specific information (#events, run number, host, data)
- □ Stores info about jobs in a DB (MySQL server)
- □ Is not a job scheduler, but can be interfaced with most schedulers: LSF, PBS, Condor and to the GRID scheduler

In production:

□ Used for Monte Carlo production and real-time analysis during *data challenge* 2004. A new workflow is going to be implemented and to be integrated in CRAB.

JAM is a tool for job application monitoring

Goals:

Monitoring, logging and bookkeeping, quality assurance and interactive control of an application for the very-end user

Features:

- Describe the application with tags
- **O**rganize the split applications in sets
- □ Retrieve the values of the tags online (Client-Server based on gSoap)
- □ Store the infos in a pseudo-filesystem (real storage with MySQL)
- Define rules on tags to classify the application as good/maybe/bad
- D Peek any remote file online
- □ Data transfer via basic C++ API

In production: first production release just ready to be used from generic users.

ACAT 2005 22-27 May 2005

□ CMS first working **prototype for Distributed User Analysis** is available and used by **real** users

Phedex, PubDB, ValidationTools, XCMSI, CRAB, BOSS, JAM under development, deployment and in production in many sites

□ CMS is using **Grid infrastructure** for physics analyses and Monte Carlo production

tens of users, **10 million** of analysed data, **10000** jobs submitted

CMS is designing a **new architecture** for the analysis workflow

ACAT 2005 22-27 May 2005