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Current Math Systems

More Interaction Numerics / Symbolics

More Symbolics

More Intellectics
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All Current Algorithmics (Numerics, Symbolics,...) is Available in 

Systems 
�

Systems like Mathematica, Maple, Derive, Mathlab, ... FORM, Singular, Cocoa, ...

�
An enormous potential for science (physics, ...) and engineering.

�
Help!
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Example:

DSol ve y ' ' x ��� a y ' x � y x , y 0 ��� 1, y ' 0 ��� 0 , y, x

y � Function x ,

a �
1� � � � �
2 a � 4 � a2 x � 4 � a2 �

1� � � � �
2 a � 4 � a2 x 	 a �

1� � � � �
2 a � 4 � a2 x � 4 � a2 �

1� � � � �
2 a � 4 � a2 x
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2 4 � a2
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Example:

Sol ve
1� � � �
s

� 1� � � �
t

���
1� � � �
F

,
1� � � � � � � �� � � �

d � s
� 1� � � � � � � �� � � �

t 
 e
���

1� � � �
F

, c ���
e F� � � � � � � � � � � � � � � �� � � � � �

f t 
 e
, M ���

t� � � �
s

, d, e, s, t

d � 	 c f F 1 � M
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M c f 	 F M

, e �
c f F 1 � M
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c f � F
, s �

F 1 � M
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M

, t � F 1 � M
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Remark:

There is lots of new and deep mathematics behind the (numeric, discrete, graphic, algebraic, and symbolic) 
algorithms of the current math systems.

In this talk only one example: Gröbner bases theory:

� What are Gröbner bases?

� How can Gröbner bases be computed?

� Why are Gröbner bases important? (Dozens of fundamental problems can be reduced to 
Gröbner bases construction!)

� � 11 of 47
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The Linear Combination of Polynomials

f 1 � 
 2 y � x y

f 2 � 
 x2 � y2

Leading power products: w.r.t. an ordering of the power products (e.g. lexicographically, by total degreee or 
...)

Consider now the following linear combination of f1  and f2 :

g � y f 1
� 
 x � 2 f 2

y 	 2 y � x y � 2 	 x 	 x2 � y2

g � y f 1
� 
 x � 2 f 2 Expand

	 2 x2 � x3

Observation:  The leading power product   x3    of g is 

     neither a multiple of the leading power product    x y     of f1

     nor      a multiple of the leading power product      y2     of f2 .

� � 12 of 47

Definition of Groebner Bases

A set F of polynomials is called a Groebner basis (w.r.t. the chosen ordering of power products) iff the 
above phenomenon cannot happen, i.e.

     for all f1, ..., fm
�  F and all (infinitely many) polynomials h1, ..., hm ,

          the leading power product of  h1 f1
� ... � hm fm  

          is a multiple of the leading power product of 

               at least one of the polynomials in F.

Counterexample: The Set F � f1, f2  of the Above Example is not a Groebner basis.

� � 13 of 47
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The "Main Theorem" of Gröbner Bases Theory (BB 1965):

F is a Gröbner basis  �    
�

f1,f2 � F
  remainder[ F, S–polynomial f1, f2 ] = 0.

S–pol ynomi al 
 2 y � x y, 
 x2 � y2 � y 
 2 y � x y 
 x 
 x2 � y2

x3 	 2 y2

Proof: Nontrivial. Combinatorial. 

The theorem reduces an infinite check to a finite check:  Recall definition of "F is a Gröbner basis":

     for all f1, ..., fm
�  F and all (infinitely many) polynomials h1, ..., hm ,

          the leading power product of  h1 f1
� ... � hm fm  

          is a multiple of the leading power product of at least one of the polynomials in F.

The power of the Gröbner bases method is contained in this theorem and its proof.

� � 14 of 47

The Problem of Constructing Gröbner Bases

Given F,  find G   such that G is a Gröbner basis 

                                            and F and G generate the same set of linear combinations.

� � 15 of 47

An Algorithm for Constructing Gröbner Bases (BB 1965)

Recall the main theorem:

F is a Gröbner basis   �     
�

f1,f2 � F
  remainder[ F, S–polynomial f1, f2 ] = 0.
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Based on the main theorem, the problem can be solved by the following algorithm:

Start with G:= F. 

For any pair of polynomials f1, f2
� G :

      h := remainder[ G, S–polynomial f1, f2 ] 

      

      If h = 0, consider the next pair.

      

      If h �  0, add h to G and iterate.          

� � 16 of 47

Termination of the Algorithm

Termination: by Dickson's Lemma (Dickson 1913, BB 1970).

� � 17 of 47

Example of Application: Solve Systems

f 1 � x y 
 2 y z 
 z;

f 2 � y2 
 x2 z � x z;

f 3 � z2 
 y2 x � x;

F � f 1 , f 2 , f 3 ;

t i me, G � Gr oebner Basi s F Ti mi ng

0.01 Second,

z � 4 z3 	 17 z4 � 3 z5 	 45 z6 � 60 z7 	 29 z8 � 124 z9 	 48 z10 � 64 z11 	 64 z12,
	 22001 z � 14361 y z � 16681 z2 � 26380 z3 � 226657 z4 � 11085 z5 	

90346 z6 	 472018 z7 	 520424 z8 	 139296 z9 	 150784 z10 � 490368 z11,

43083 y2 	 11821 z � 267025 z2 	 583085 z3 � 663460 z4 	 2288350 z5 �

2466820 z6 	 3008257 z7 � 4611948 z8 	 2592304 z9 � 2672704 z10 	 1686848 z11,

43083 x 	 118717 z � 69484 z2 � 402334 z3 � 409939 z4 � 1202033 z5 	

2475608 z6 � 354746 z7 	 6049080 z8 � 2269472 z9 	 3106688 z10 � 3442816 z11
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zsol � NSol ve G 1 ��� 0, z

z � 	 0.331304 	 0.586934 � , z � 	 0.331304 � 0.586934 � ,

z � 	 0.296413 	 0.705329 � , z � 	 0.296413 � 0.705329 � ,

z � 	 0.163124 	 0.37694 � , z � 	 0.163124 � 0.37694 � ,
z � 0. , z � 0.0248919 	 0.89178 � , z � 0.0248919 � 0.89178 � ,

z � 0.468852 , z � 0.670231 , z � 1.39282

Gsubnum � G . zsol 1

1.33227 � 10 � 15 � 9.71445 � 10 � 17 � ,
	 523.519 	 4967.65 � 	 4757.86 � 8428.97 � y,
	 7846.9 	 8372.06 � � 43083 y2, 	 16311.7 � 16611. � � 43083 x

ysol � NSol ve Gsubnum 2 ��� 0, y

y � 	 0.473535 	 0.205184 �

Theorem (Roider, Kalkbrener et al. 1990): It suffices to consider the poly in y with lowest degree.

xsol � NSol ve Gsubnum 4 ��� 0, x

x � 0.378611 	 0.385558 �

F . zsol 1 . ysol 1 . xsol 1

3.88578 � 10 � 16 � 1.3739 � 10 � 15 � ,
	 9.15934 � 10 � 16 	 2.91434 � 10 � 16 � , 	 1.05471 � 10 � 15 	 6.66134 � 10 � 16 �

� � 18 of 47

Example of Application: Invariant Theory

A Question:  Can 

h � x1
7 x2 
 x1 x2

7

x1
7 x2

	 x1 x2
7

be expressed as a polynomial in 

F � x1
2 � x2

2 , x1
2 x2

2 , x1
3 x2 
 x1 x2

3

x1
2 � x2

2, x1
2 x2

2, x1
3 x2

	 x1 x2
3

?
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Note: These polynomials are fundamental invariants for the group � 4 .

� � 19 of 47

Reduction to Groebner Bases Computation

t i me, GB � Gr oebner Basi s


 i 1
� x1

2 � x2
2 , 
 i 2

� x1
2 x2

2 , 
 i 3
� x1

3 x2 
 x1 x2
3 , x2 , x1 , i 3 , i 2 , i 1 Ti mi ng

0.011 Second,

i1
2 i2

	 4 i2
2 	 i3

2, 	 i2
� i1 x1

2 	 x1
4, i1

2 i3 x1
	 2 i2 i3 x1

	 i1 i3 x1
3 � i1

2 i2 x2
	 4 i2

2 x2,

i1
2 x1

	 2 i2 x1
	 i1 x1

3 � i3 x2,
	 i1 i3

� 2 i3 x1
2 	 i1

2 x1 x2
� 4 i2 x1 x2,

	 i3 x1
	 2 i2 x2

� i1 x1
2 x2,

	 i3
	 i1 x1 x2

� 2 x1
3 x2,

	 i1
� x1

2 � x2
2

Pol ynomi al Reduce x1
7 x2 
 x1 x2

7, GB,

x2 , x1 , i 3 , i 2 , i 1 , Monomi al Or der � Lexi cogr aphi c

0, 	 i3
	 1
�
 
 

2
i1 x1 x2

	 x1
3 x2, 0,

3 i1 x2
�
�
�
�
�
�
 
 
�
�
�
 
�
 
�
 

4

	 1
�
 
 

2
x1
2 x2

� x2
3


�
�
�
 
 
 

2
, i1

	 x1
2


�
�
�
 
 
 

2

� 3 x2
2


�
�
�
�
�
�
�
 
 
 

4

,

3 i1 x1
�
�
�
�
�
�
�
 
�
 
�
 
�
 
�
 

2

� x1 x2
2,

x2
4


�
 
�
 
 
 

2
, 	 1
�
 
 


4
i1
2 x1 x2

	 1
�
 
 

2
i1 x1 x2

3 	 x1 x2
5 , i1

2 i3
	 i2 i3

Theorem (Sweedler, Sturmfels et al. 1988): h can be represented in terms of I iff remainder of h w.r.t. 
"Groebner basis of I with slack variables" is a polynomial in the slack variables (which gives the 
representation).

i 1
2 i 3 
 i 2 i 3 . i 1 � x1

2 � x2
2 , i 2 � x1

2 x2
2 , i 3 � x1

3 x2 
 x1 x2
3 Expand

x1
7 x2

	 x1 x2
7

R � Pol ynomi al Reduce x1
6 x2 
 x1 x2

6 , GB,

x2 , x1 , i 3 , i 2 , i 1 , Monomi al Or der � Lexi cogr aphi c

0,
i1 x1
�
�
�
�
�
�
�

�
 
�
 

2

	 i1 x2
	 x1

2 x2, 0,
3 i1
�
�
�
�
 
�
�
 
 
 

4

	 x1
2


�
�
�
 
 
 

2

� x2
2


�
�
�
 
 
 

2
,

	 x1
�
�
�
 
 
 

4

� 3 x2
�
�
�
�
�
�
�
 
 
 

4

,
3 i1
�
 
�
�
�
�
�
 
 
 

4

� x1 x2,
x2
3


�
 
�
 
 
 

2
, 	 1
�
 
 


4
i1
2 x1

	 1
�
 
 

2
i1 x1 x2

2 	 x1 x2
4 ,

	 i1
3 x1

� 2 i1 i2 x1
� 1
�
 
 

2
i1 i3 x1

� i1
2 x1

3 	 i2 x1
3 � 1
�
 
 


2
i3 x1

3 � 1
�
 
 

2
i1 i2 x2

x16 x2
	 x1 x26  can not be expressed by the fundamental invariants in I. 
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Application: Graph Coloring

The Problem:

Find all admissible colorings in k colors of a graph with n vertices and edges E:

An admissible coloring in 3 colors of a graph with 4 vertices and edges {1,2}, {1,3}, {2,3}, {3,4}:

1

43

2

Not an admissible coloring in 3 colors of the same graph:

1

43

2

� � 21 of 47
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The Translation into a Groebner Bases Problem

Theorem: The possible colorings of the above graph correspond 1-1 to the common solutions of the 
following set of polynomials:


 1 � x1
3 , . . . at ver t ex 1 col or i s a 3 
 ar y r oot of 1


 1 � x2
3 , . . . at ver t ex 2 col or i s a 3 
 ar y r oot of 1


 1 � x3
3 ,


 1 � x4
3 ,

x1
2 � x1 x2

� x2
2 , . . . t he col or s at 1 and 2 must be di f f er ent ,

x1
2 � x1 x3

� x3
2 ,

x2
2 � x2 x3

� x3
2 ,

x3
2 � x3 x4

� x4
2

� � 22 of 47

Solution by Groebner Bases

Compute a Groebner basis of this polynomial set and compute all solutions.

GB � Gr oebner Basi s 
 1 � x1
3 , 
 1 � x2

3 , 
 1 � x3
3 , 
 1 � x4

3 ,

x1
2 � x1 x2

� x2
2 , x1

2 � x1 x3
� x3

2 , x2
2 � x2 x3

� x3
2 , x3

2 � x3 x4
� x4

2 ,

x4 , x3 , x2 , x1

	 1 � x1
3, x1

2 � x1 x2
� x2

2, 	 x1
	 x2

	 x3,
	 x1 x2

� x1 x4
� x2 x4

	 x4
2

Sol ve 
 1 � x1
3 ��� 0, 
 1 � x2

3 ��� 0, 
 1 � x3
3 ��� 0, 
 1 � x4

3 ��� 0,

x1
2 � x1 x2

� x2
2 ��� 0, x1

2 � x1 x3
� x3

2 ��� 0, x2
2 � x2 x3

� x3
2 ��� 0, x3

2 � x3 x4
� x4

2 ��� 0 ,

x4 , x3 , x2 , x1

x4 � 1, x2 � 1, x1 � 	 1 � 	 1 1 3, x3 � 	 	 1 1 3 ,

x4 � 1, x2 � 	 1 � 	 1 1 3, x1 � 1, x3 � 	 	 1 1 3 ,

x4 � 1, x2 � 	 1 	 	 1 2 3, x1 � 1, x3 � 	 1 2 3 ,

x4 � 1, x2 � 	 1 1 3 	 	 1 2 3, x1 � 	 	 1 1 3, x3 � 	 1 2 3 ,

x4 � 	 	 1 1 3, x2 � 	 1 � 	 1 1 3, x1 � 	 	 1 1 3, x3 � 1 ,

x4 � 	 	 1 1 3, x2 � 	 1 	 	 1 2 3, x1 � 1, x3 � 	 1 2 3 ,

x4 � 	 	 1 1 3, x2 � 	 1 	 	 1 2 3, x1 � 	 1 2 3, x3 � 1 ,

x4 � 	 	 1 1 3, x2 � 	 1 1 3 	 	 1 2 3, x1 � 	 	 1 1 3, x3 � 	 1 2 3 ,

x4 � 	 1 2 3, x2 � 	 1 � 	 1 1 3, x1 � 	 	 1 1 3, x3 � 1 ,

x4 � 	 1 2 3, x2 � 	 1 	 	 1 2 3, x1 � 	 1 2 3, x3 � 1 ,

x4 � 	 1 � 	 1 1 3, x2 � 1, x1 � 	 1 � 	 1 1 3, x3 � 	 	 1 1 3 ,

x4 � 	 1 � 	 1 1 3, x2 � 	 1 � 	 1 1 3, x1 � 1, x3 � 	 	 1 1 3

14 2005-05-26-ACAT-Berlin-26-07h.nb



Slightly re-organized output:

x1 � 1, x2 � 
 
 1 1 3 , x3 � 
 1 � 
 1 1 3 , x4 � 1 ,

x1 � 1, x2 � 
 
 1 1 3 , x3 � 
 1 � 
 1 1 3 , x4 � 
 
 1 1 3 ,

x1 � 1, x2 � 
 1 2 3 , x3 � 
 1 
 
 1 2 3 , x4 � 1 ,

x1 � 1, x2 � 
 1 2 3 , x3 � 
 1 
 
 1 2 3 , x4 � 
 1 2 3 ,

x1 � 
 
 1 1 3, x2 � 1, x3 � 
 1 � 
 1 1 3 , x4 � 1 ,

x1 � 
 
 1 1 3, x2 � 1, x3 � 
 1 � 
 1 1 3 , x4 � 
 
 1 1 3 ,

x1 � 
 
 1 1 3, x2 � 
 1 � 
 1 1 3, x3 � 1, x4 � 
 
 1 1 3 ,

x1 � 
 
 1 1 3, x2 � 
 1 � 
 1 1 3, x3 � 1, x4 � 
 1 � 
 1 1 3 ,

x1 � 
 1 2 3 , x2 � 1, x3 � 
 1 
 
 1 2 3 , x4 � 1 ,

x1 � 
 1 2 3 , x2 � 1, x3 � 
 1 
 
 1 2 3 , x4 � 
 1 2 3 ,

x1 � 
 1 2 3 , x2 � 
 1 
 
 1 2 3 , x3 � 1, x4 � 
 1 2 3 ,

x1 � 
 1 2 3 , x2 � 
 1 
 
 1 2 3 , x3 � 1, x4 � 
 1 
 
 1 2 3

For example, x1 � 1, x2 � 	 	 1 1 3, x3 � 	 1 � 	 1 1 3, x4 � 	 	 1 1 3 corresponds to 

1

43

2

� � 23 of 47

Application: Integer Optimization

Example (B. Sturmfels):

What is the minimum number of coins (e.g. p Pennies, n Nickels, d Dimes, q Quarters) for 
composing a given value, e.g. 117?

Reduction to Gröbner Bases Problem (C. Traverso et al. 1986):

Code the integer values p, n, d, q as exponents of power products!

Code the goal function as the (generalized) degree of the power products!

Code the exchange rules of the coins (the relations between the quantities) as polynomials 
consisting of power products:

2005-05-26-ACAT-Berlin-26-07h.nb 15



F � P5 
 N, P10 
 D, P25 
 Q

	 N � P5, 	 D � P10, P25 	 Q

Now compute the Gröbner basis of F (w.r.t. degree ordering):

G � Gr oebner Basi s F, Monomi al Or der � Degr eeLexi cogr aphi c

	 D � N2, 	 D3 � N Q, D2 N 	 Q, 	 N � P5

Now you can be sure that, starting with any admissible solution (e.g. (p=17, n=10, d=5, q=0),  by 
reduction modulo G, you will end up with a minimal solution:

Pol ynomi al Reduce P17 N10 D5 , G, , Monomi al Or der � Degr eeLexi cogr aphi c

D9 P17 � D8 N2 P17 � D7 N4 P17 � D6 N6 P17 � D5 N8 P17 � D4 P17 Q2 � P7 Q4,
	 D7 P17 	 D4 N P17 Q 	 D2 P17 Q2, P17 Q3, D P2 Q4 � N P7 Q4 � P12 Q4 , D N P2 Q4

Answer: take 4 quarters, 1 dime, 1 nickel, 2 pennies.

� � 24 of 47

More Applications

Gröbner Bases 98 Conference:

B. B., F. Winkler. Gröbner Bases: Theory and Applications. Cambridge University Press, 1998. 560 
pages.

16 2005-05-26-ACAT-Berlin-26-07h.nb



This book contains tutorials and original papers.

This book contains also:

B. B. Introduction to Gröbner Bases, pp. 3-31.

B. B. An Algorithmic Criterion for the Solvability of Systems of Algebraic Equations, pp. 540-560. 
(English translation of the original paper from 1970, in which Gröbner bases were introduced.)

A continuation of this book is the special issue of the JSC  on Gröbner bases edited by Q.N. Tran and F. 
Winkler, 2000.

� � 25 of 47

Current Math Systems

More Interaction Numerics / Symbolics

More Symbolics

More Intellectics

� � 26 of 47

Example: The Numerics of Gröbner Bases

In both directions (H. Stetter 1987 - 2005):

� Start from Gröbner bases and compute solutions (reduction to an eigenvalue problem).

� Numerically, compute (a numerical variant) of Gröbner bases.

� � 27 of 47
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Current Math Systems

More Interaction Numerics / Symbolics

More Symbolics

More Intellectics

� � 28 of 47

Example: Computation on Operators

computation on (finitary representations of) numbers: e.g. computation on algebraic numbers

           
computation on (finitary representations of) functions (on numbers): e.g. symbolic integration

           
computation on (finitary representations of) operators (on functions): e.g. symbolic generation of 
Green's funtions for boundary-value problems

Project SFB 1322  (B.B. and H. Engl, RICAM), PhD thesis and postdoc work of M. Rosenkranz:

M.Rosenkranz, B.B, H.W.Engl. Solving Linear BVPs via Non–commutative Gröbner Bases. 
Applicable Analysis, 82(7), July 2003, pp. 655–675.
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M.Rosenkranz. A New Symbolic Method for Solving Linear Two–Point BVPs on the Operator 
Level. Journal of Symbolic Computation, 39, February 2005, pp.171–199.

� � 29 of 47

Basic Idea and Procedure

FGiven a two–point BVP (e.g. beam equation):

T u � f

B1 u � … � Bn u � 0

� Example: Beam Deflection

�  

We want to find its Green's operator in the sense of

T G � 1 i.e. T G f � f

B1 G � … � Bn G � 0 i.e. B1 G f � 0

We do the following:

� Compute the solution space N  of the homogeneous equation Tu � 0.

� Determine a projector P  onto N  such that M � 1 � P C � a, b  fulfills the boundary conditions.

� Find the right inverse T
�

 of T  (a variant of Moore-Penrose inverse). 

� Build up G � 1 � P T
�

 as the crude Green's operator.

� Reduce G  with respect to the Green's system (a non-commutative Gröbner basis by the main 
theorem; 233 S-polys needed!) for obtaining a standard representation.

� (Optionally, extract Green's function g  from standard representation of G ).

� � 30 of 47
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The Green's System

Syst em "1. Equalities for Isolating Differential Operators", any f ,

D A � 1 " DA"

D B � 
 1 " DB"

D f � f D � f ' " DM"

D L � 0 " DL"

DR � 0 " DR"

Syst em "2. Equalities for Isolating Boundary Operators", any f ,

L A � 0 " LA"

R A � A � B " RA"

L B � A � B " LB"

R B � 0 " RB"

L f � f � L " LM"

R f � f
�

R " RM"

L L � L " LL"

L R � R " LR"

R L � L " RL"

R R � R " RR"

Syst em "Equalities for Algebraic Simplication", any f , g ,

f g � f g " MM"
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Syst em "3. Equalities for Contracting Integration Operators", any f ,

A f A �
�

f A 
 A
�

f " AMA"

A f B �
�

f B � A
�

f " AMB"

B f A � � f A � B � f " BMA"

B f B � � f B 
 B � f " BMB"

A A �
�

1 A 
 A
�

1 " AA"

A B �
�

1 B � A
�

1 " AB"

B A � � 1 A � B � 1 " BA"

B B � � 1 B 
 B � 1 " BB"

Syst em "4. Equalities for Absorbing Integration Operators", any f ,

A f D � 
 f � L � f 
 A f ' " AMD"

B f D � f
�

R 
 f 
 B f ' " BMD"

A D � 
 L � 1 " AD"

B D � R 
 1 " BD"

A f L �
�

f L " AML"

B f L � � f L " BML"

A f R �
�

f R " AMR"

B f R � � f R " BMR"

A L �
�

1 L " AL"

B L � � 1 L " BL"

A R �
�

1 R " AR"

B R � � 1 R " BR"

� � 31 of 47

2005-05-26-ACAT-Berlin-26-07h.nb 21



Current Math Systems

More Interaction Numerics / Symbolics

More Symbolics

More Intellectics

� � 32 of 47

Automated (Dis-) Proving in Geometry

Reduction of the Problem to Gröbner bases computation:    

                Geo Theorem        �   ( by coordinatization )

               
�

x,y, ...
( poly1(x,y,...)=0  ... �  poly(x,y,...)=0 )   �

               

               �
�

x,y, ...
 (  poly1(x,y,...)=0  ...  poly(x,y,...) � 0 )  �

               

               �
�

x,y, ...,a
(  poly1(x,y,...)=0  ...   a . poly(x,y,...) - 1 = 0 )  

The latter question can be decided by the Gröbner basis method!

� � 33 of 47
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Example: Pappus Theorem
� What does the theorem say geometrically?

A

A1

B

B1

C

C1

P Q
S

� Textbook formulation:

Let A,B, C and A1,B1, C1 be on two lines and P = AB1  A1B, Q = AC1  A1C, S = BC1  B1C. Then P, 
Q, and S are collinear.

� Input to the system:

Pr oposi t i on " Pappus" , any A, B, A1, B1, C, C1, P, Q, S ,

poi nt A, B, A1, B1 pon C, l i ne A, B pon C1, l i ne A1, B1

i nt er P, l i ne A, B1 , l i ne A1, B i nt er Q, l i ne A, C1 , l i ne A1, C

i nt er S, l i ne B, C1 , l i ne B1, C � col l i near P, Q, S

� Input to the system:

Pr ove Pr oposi t i on " Pappus" , by � Geomet r yPr over ,

Pr over Opt i ons � Met hod 
�� " Gr oebner Pr over " , Ref ut at i on � Tr ue

� Notebook generated automatically by the proving algorithm based on Groebner basis algorithm:

Prove:
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(Proposition (Pappus))
   �
A,B,A1,B1,C,C1,P,Q,S

point A, B, A1, B1 pon C, line A, B

pon C1, line A1, B1 inter P, line A, B1 , line A1, B

inter Q, line A, C1 , line A1, C
inter S, line B, C1 , line B1, C � collinear P, Q, S

 

with no assumptions.

To prove the above statement we shall use the Gröbner basis method. First we have to transform the 
problem into algebraic form. 

Algebraic Form:

To transform the geometric problem into algebraic form we have to chose first an orthogonal 
coordinate system.

Let's have the origin in point A , and points B, C  on the two axes.

Using this coordinate system we have the following points:

A, 0, 0 , B, 0, u1 , A1, u2, u3 , B1, u4, u5 ,

C, 0, u6 , C1, u7, x1 , P, x2, x3 , Q, x4, x5 , S, x6, x7

The algebraic form of the assertion is:

(1) �
x1,x2,x3,x4,x5,x6,x7

u3 u4
� 	 u2 u5

� 	 u3 u7
� u5 u7

� u2 x1
� 	 u4 x1 � 0

u5 x2
� 	 u4 x3 � 0 	 u1 u2

� u1 x2
� 	 u3 x2

� u2 x3 � 0
x1 x4

� 	 u7 x5 � 0 	 u2 u6
� 	 u3 x4

� u6 x4
� u2 x5 � 0

u1 u7
� 	 u1 x6

� x1 x6
� 	 u7 x7 � 0 	 u4 u6

� 	 u5 x6
� u6 x6

� u4 x7 � 0 �
x3 x4

� 	 x2 x5
� 	 x3 x6

� x5 x6
� x2 x7

� 	 x4 x7 � 0

This problem is equivalent to:

(2)
� �

x1,x2,x3,x4,x5,x6,x7
u3 u4

� 	 u2 u5
� 	 u3 u7

� u5 u7
� u2 x1

� 	 u4 x1 � 0

u5 x2
� 	 u4 x3 � 0 	 u1 u2

� u1 x2
� 	 u3 x2

� u2 x3 � 0

x1 x4
� 	 u7 x5 � 0 	 u2 u6

� 	 u3 x4
� u6 x4

� u2 x5 � 0

u1 u7
� 	 u1 x6

� x1 x6
� 	 u7 x7 � 0 	 u4 u6

� 	 u5 x6
� u6 x6

� u4 x7 � 0

x3 x4
� 	 x2 x5

� 	 x3 x6
� x5 x6

� x2 x7
� 	 x4 x7 � 0

To remove the last inequality, we use the Rabinowitsch trick: Let  v0  be a new variable. Then the 
problem becomes:

(3)
� �

x1,x2,x3,x4,x5,x6,x7,v0
u3 u4

� 	 u2 u5
� 	 u3 u7

� u5 u7
� u2 x1

� 	 u4 x1 � 0

u5 x2
� 	 u4 x3 � 0 	 u1 u2

� u1 x2
� 	 u3 x2

� u2 x3 � 0

x1 x4
� 	 u7 x5 � 0 	 u2 u6

� 	 u3 x4
� u6 x4

� u2 x5 � 0
u1 u7

� 	 u1 x6
� x1 x6

� 	 u7 x7 � 0 	 u4 u6
� 	 u5 x6

� u6 x6
� u4 x7 � 0

1 � 	 v0 x3 x4
� 	 x2 x5

� 	 x3 x6
� x5 x6

� x2 x7
� 	 x4 x7 � 0

This statement is true iff the corresponding Gröbner basis is { 1} .

The Gröbner bases is 1 .

Hence,  the statement and the original assertion is  true.
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Statistics:

Time needed to compute the Gröbner bases: 0.42 Seconds.

� � 34 of 47

Automated Proofs of Theorems in Analysis (The "PCS" Prover: BB 

2001)

� Initialize Theorema

� Example

Def i ni t i on " l i mi t : " , any f , a ,

l i mi t f , a � �
�
��� 0

�
N

�
n

n � N
f n 
 a �	�

Pr oposi t i on " l i mi t of sum" , any f , a, g, b ,

l i mi t f , a l i mi t g, b � l i mi t f � g, a � b

Def i ni t i on " � : " , any f , g, x ,

f � g x � f x � g x

Lemma " � " , any x, y, a, b, 
 , � ,

x � y 
 a � b � 
 � � � x 
 a ��
 y 
 b ���

Lemma " max" , any m, M1, M2 ,

m 
 max M1, M2 � m 
 M1 m 
 M2

Theor y " l i mi t " ,

Def i ni t i on " l i mi t : "
Def i ni t i on " � : "
Lemma " � "
Lemma " max"

Pr ove Pr oposi t i on " l i mi t of sum" , usi ng � Theor y " l i mi t " , by � PCS

� ProofObject �
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Proof contains interesting algorithmic and didactic information!

� � 35 of 47

Algorithm-Supported Mathematical Theory Exploration

A new world-wide movement (approx. 20 research groups, e.g. Mizar, Isabelle, Omega, NuPrL, Coq, etc.)

Our Theorema Group is a (founding) member of this network.

Goals:

� invent (axioms, definitions for) new concepts (operations: predicates, functions)   (e.g. limit)

� invent and prove properties of notions

� invent problems about notions

� invent methods (algorithms) for problems and prove their correctness

� compute (apply algorithms to data)

� organize, store, and retrieve knowledge

� � 36 of 47

Example: Automated Synthesis of the Gröbner Bases Algorithm (BB 

2005)

Starting from a formal (predicate logic) specification of the problem, 

by this new algorithm synthesis method,

the key idea of the main theorem (the notion of S-polynomial) is automatically generated and verified.

� � 37 of 47

Conclusions

Intellectics:

= algorithm-supporte mathematical theory exploration

= mathematical knowledge management
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= "(Anti)bourbakism of the 21st century"

Will drastically change the way 

- how we do research in math,

- how we teach math,

- how we apply math,

- how we store and retrieve math knowledge.

� � 38 of 47

For Physics ?

� � 39 of 47
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Special Semester on Gröbner Bases, Feb - July 2006

At RICAM and RISC, see       

           www.ricam.ac.at

goto "expression of interest" form: visiting researcher, postdoc, and doc fellowships available.            

� � 40 of 47

Appendix: More Details on Gröbner Bases and 
References

How Difficult is the Construction of Gröbner Bases?

Very Easy

The structure of the algorithm is easy. The operations needed in the algorithm are 
elementary. "Every high-school student can execute the algorithm." (See palm-top TI-98.)    

Very Difficult

The inherent complexity of the problems that can be solved by the GB method (e.g. graph 
colorings) is "exponential". Hence, the worst-case complexity of the GB algorithm must be 
high.   

Sometimes Easy

Mathematically interesting examples often have a lot of "structure" and, in concrete 
examples, GB computations can be reasonably, even surprisingly, fast. 

Enormous Potential for Improvement

More mathematical theorems can lead to drastic speed-up:

The use of "criteria" for eliminating the consideration of certain S-polynomials.

p-adic approaches and floating point approaches.

The "Gröbner Walk" approach.

The "linear algebra" approach. (Generalized Sylvester matrices.)  

The "numerics" approach. 
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Tuning of the algorithm:

Heuristics, strategies for choosing orderings, selecting S-polynomials etc.

Good implementation techniques.

 A huge literature.

� � 41 of 47

Why "Gröbner"  Bases?

Professor  Wolfgang Gröbner (1899-1980) was my PhD thesis supervisor.

He gave me the problem of finding "the uncovered points if the black points are given".

x
0 1 32

1

2

3

0

In my thesis (1965) and journal publication  (1970) I introduced:

* the concept of Gröbner bases and reduced Gröbner bases

* the S-polynomials

* the main theorem with proof

* the algorithm with termination and correctness proof

* the uniqueness of Gröbner bases

* first applications (computing in residue rings, Hilbert function, algebraic systems)

* the technique of base-change w.r.t. to different orderings

* a complete computer implementation 

* first complexity considerations.

However, in the thesis, I did not use the name "Gröbner bases". I introduced this name only in 1976, for 
honoring Gröbner, when people started to become interested in my work.   
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My later contributions:

* the technique of criteria for eliminating unnecessary reductions

* an abstract characterization of "Gröbner bases rings".

� � 42 of 47

Gröbner Bases on Your Desk and in Your Palm

GB implementations are contained in all the current math software systems like Mathematica (see demo), 
Maple, Magma, Macsyma, Axiom, Derive, Reduce, Mupad, ...

Software systems specialized on Gröbner bases: RISA-ASIR (M. Noro, K. Yokoyama), CoCoA, Macaulay, 
Singular, ...

Gröbner bases are now availabe on the TI-98 (implemented in Derive).

� � 43 of 47

Textbooks on Gröbner Bases

T. Kreuzer, L. Robbiano: Algorithmic Commutative Algebra I. Springer, Heidelber, 2000: Contains a list of all 
other, approx. 10, textbooks on GB.

W.W.Adams, P. Loustenau. Introduction to Gröbner Bases. Graduate Studies in Mathematics: Amer. Math. 
Soc., Providence, R.I., 1994.

T.Becker, V.Weispfenning. Gröbner Bases: A Computational Approach to Commutative Algebra. Springer, 
New York, 1993.

D.Cox, J.Little, D.O'Shea. Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic 
Geometry and Commutative Algebra. Springer, New York, 1992.

....

M. Maruyama. Gröbner Bases and Applications. 2002.

M. Noro, K. Yokoyama. Computational Fundamentals of Gröbner Bases. University of Tokyo Press, 2003.

� � 44 of 47
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Gröbner Bases on the Web

Search. E.g. in the Research Index you obtain ~ 3000 citations.

� � 45 of 47

Original Publications on Gröbner Bases

Approximately 600 papers appeared meanwhile on Gröbner bases.

J of Symbolic Computation, in particular, special issues.

ISSAC Conferences.

Mega Conferences.

ACA Conferences.

...

The essential  additional original ideas in the literature:

� Gröbner bases can be constructed w.r.t. arbitrary "admissible" orderings (W. Trinks 1978)

� Gröbner bases w.r.t. to "lexical" orderings have the elimination property (W. Trinks 1978)

� Gröbner bases can be used for computing syzygies and the S-polys generate the module of 
syzygies (G. Zacharias 1978)

� A given F, w.r.t. the infinitely many admissible orderings, has only finitely many Gröbner 
bases and, hence, we can construct a "universal" Gröbner bases for F (L. Robbiano, V. 
Weispfenning, T. Schwarz 1988)

� Starting from a Gröbner bases for F for ordering O1  one can "walk", by changing the basis 
only slightly, to a basis for a "nearby" ordering O2   and so on ... until one arrives at a Gröbner 
bases for a desired ordering Ok  (Kalkbrener, Mall 1995, Nam 2000).

� Use arbitrary linear algebra algorithms for the reduction (remaindering) process: (Faugère 
1997).

� ... numerours applications,

� � 46 of 47
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Research Topics
� the inner structure of Groebner bases: generalized Sylvester matrices

� the numerics of GB computations

� axiomatic characterization of Groebner rings

� generalizations (e.g. non-commutative poly-rings)

� speeding up the computation

� Groebner bases for particular classes of ideals (avoid computation)

� the study of admissible orderings

� applications (problem reductions, e.g. functional analysis, BV problems, Rosenkranz 2003)

� � 47 of 47
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