
1
Marek Biskup ACAT2005PROOF

Parallel Interactive and Batch
HEP-Data Analysis

with PROOF

Maarten Ballintijn*, Marek Biskup**,
Rene Brun**, Philippe Canal***,

Derek Feichtinger****, Gerardo Ganis**,
Guenter Kickinger**, Andreas Peters**,

Fons Rademakers**

* - MIT ** - CERN *** - FNAL **** - PSI

2
Marek Biskup ACAT2005PROOF

Outline

■ Data analysis model of ROOT

■ Overview of PROOF

■ Recent developments

■ Future plans - Interactive-Batch data analysis

3
Marek Biskup ACAT2005PROOF

ROOT Trees
■ Tree – main data structure of ROOT
■ Set of records (entries)
■ Record may contain basic C types (int, double, arrays) and

any C++ object, polymorphic object, collection, stl collection,
etc, e.g.:

� stl::list<TrackClass> tracks;
� Electrons

➔ Int_t NoElectrons;
➔ Double_t Momentum[NoElectrons][4];
➔ Float_t Position[NoElectrons][4];

� Muons
➔ Int_t NoMuons;
➔ …

■ Provide efficient access to partial entry data
■ Typical size < 2GB

4
Marek Biskup ACAT2005PROOF

Trees in memory and in files

Each Leaf is an object (c++ object, array, basic type).
Each Branch groups several Leafs/Branches.

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

T.Fill()

T.GetEntry(6)

T

Memory

Branch

Leaf

5
Marek Biskup ACAT2005PROOF

Tree data storage on disk

Tree Header
describing data
structure

Buffer 1

Buffer 2

…
Branch data split
into compressed

Buffers

6
Marek Biskup ACAT2005PROOF

ROOT Trees - GUI

8 leaves of a branch
named ‘Electrons’

Double-click
to histogram

a leaf

8 Branches of
tree named ‘T’

7
Marek Biskup ACAT2005PROOF

Tree Friends

0123456789101112131415161718

0123456789101112131415161718

0123456789101112131415161718

Public

read

Public

read

User

Write

Entry # 8

Behave in exactly the same way as a single Tree!

8
Marek Biskup ACAT2005PROOF

ROOT Chains

■ A typical Tree: < 2GB – you can process it on your laptop
■ Chain – list of trees

� e.g. 1000 files – the processing takes long time!

File 1,
entries
0 - 800 File 2,

entries
801 - 1340 File 3,

entries
1341 - 2000

. . .

Behave in
exactly the

same way as a
single Tree!

9
Marek Biskup ACAT2005PROOF

Tree Viewer

Drag and
drop

variables to
create

expressions

And click the Draw button

10
Marek Biskup ACAT2005PROOF

Chain.Draw()
chain.Draw() is a function called by the GUI for drawing

chain.Draw(“sumetc:nevent:nrun”, “”, “col”);

chain.Draw(“nevent:nrun”, “”, “lego”);

11
Marek Biskup ACAT2005PROOF

Advanced data processing

■ Preprocessing and initialization
■ Processing each entry (loop over

all files and entries in each file)
■ Post processing and clean-up

Do not assume
anything about the

order in which
Process() is called

for different
entries!

Selectors
contain only
the functions
important for
processing

We read only
one branch

12
Marek Biskup ACAT2005PROOF

ROOT Analysis Model

Client

Local file

Remote file
(dCache, Castor,

RFIO, Chirp)

Rootd/xrootd
server

ROOT standard model
Files analyzed on a local computer

Remote data accessed via remote fileserver (rootd/xrootd)

13
Marek Biskup ACAT2005PROOF

Data transfer takes time.

PROOF

Bring the KiloBytes to the PetaBytes
and not the PetaBytes to the KiloBytes

■ Parallel interactive analysis of ROOT Data
■ Using the same ROOT Selectors (transparency!)
■ Execution on clusters of heterogeneous computers

(scalability!)

Normal Laptop/PC can process up to 10MB/s.
Current experiments and LHC need much more

14
Marek Biskup ACAT2005PROOF

PROOF Basic Architecture

Slaves

Client
Master Files

Commands, scripts

Histograms, plots

Single-Cluster mode
The Master divides the work among the slaves

After the processing finishes, merges the results
(histograms, scatter plots)

And returns the result to the Client

15
Marek Biskup ACAT2005PROOF

Workflow for tree analysis

Initialization

Process

Process

Process

Process

Wait for next
command

Slave 1 Process(“ana.C”)

Pa
ck

et
 g

en
er

at
or

Initialization

Process

Process

Process

Process

Wait for next
command

Slave NMaster
GetNextPacket()

GetNextPacket()

GetNextPacket()

GetNextPacket()

GetNextPacket()

GetNextPacket()

GetNextPacket()

GetNextPacket()

SendObject(histo)SendObject(histo)
Add

histograms
Return
results

0,100

200,100

340,100

490,100

100,100

300,40

440,50

590,60

Process(“ana.C”)

16
Marek Biskup ACAT2005PROOF

PROOF and Selectors

No user’s
control of the
entries loop!

Many
Trees are

being
processed

Initialize
each slave

The code is shipped to each
slave and SlaveBegin(), Init(),
Process(), SlaveTerminate()
are executed there

The same code works
also without PROOF.

17
Marek Biskup ACAT2005PROOF

PROOF Sequential mode

Client Master Files

Commands, scripts

Histograms, plots, canvases

The Master executes scripts (Selectors) and
returns results to the Client

Canvases will be fetched from the Master
automatically

Pseudo-remote desktop (better than XWindow
for WAN)

From the users
point of view it

works in the same
way as the

standard proof
mode

The canvas is automatically displayed
after the processing has finished

Executes the selector and
creates an off-screen canvas

18
Marek Biskup ACAT2005PROOF

PROOF – Drawing a histogram

Chains may be
also created
automatically by
a query to a grid
catalog

19
Marek Biskup ACAT2005PROOF

GUI and real time feedback

Feedback
histogram,

updated every
(e.g.) 1 second

Chain definition (header)
is fetched from the

PROOF master

20
Marek Biskup ACAT2005PROOF

Current Limitations of PROOF

Processing
blocks the client

Permanent connection to
the master.

No dynamic usage
of the GRID.

■ Intended for interactive
usage: Typical queries
time – several minutes.

■ Designed to work on a
local cluster with static
configuration.

Originally:

21
Marek Biskup ACAT2005PROOF

Typical Queries
Interactive/Batch queries

GUI

Commands

scripts
Batch

connected

connected or
disconnected

disconnected

22
Marek Biskup ACAT2005PROOF

Analysis session snapshot

What are planning to implement:

AQ1: 1s query produces a local histogram

AQ2: a 10mn query submitted to PROOF1

AQ3->AQ7: short queries

AQ8: a 10h query submitted to PROOF2

BQ1: browse results of AQ2

BQ2: browse temporary results of AQ8

BQ3->BQ6: submit 4 10mn queries to
PROOF1

CQ1: Browse results of AQ8, BQ3->BQ6

Monday at 10h15
ROOT session
On my laptop

Monday at 16h25
ROOT session
On my laptop

Wednesday at
8h40

session
on any web

browser

23
Marek Biskup ACAT2005PROOF

Planned features

■ Session disconnect and reconnect

■ Asynchronous queries

■ Start-up of slaves via Grid job scheduler

■ Allow slaves to join/leave the computation

■ Slaves calling out to master (firewalls)

24
Marek Biskup ACAT2005PROOF

PROOF on the Grid

PROOFPROOF

USER SESSIONUSER SESSION

PROOF PROOF SLAVE SLAVE
SERVERSSERVERS

PROOF MASTERPROOF MASTER
SERVERSERVER

PROOF PROOF SLAVE SLAVE
SERVERSSERVERS

PROOF PROOF SLAVE SLAVE
SERVERSSERVERS

Guaranteed site access through
PROOF Sub-Masters calling out
to Master (agent technology)

PROOF SUBPROOF SUB--MASTERMASTER
SERVERSSERVERS

PROOFPROOF

PROOFPROOF

PROOFPROOF

Grid/Root Authentication

Grid Access Control Service

TGrid UI/Queue UI

Proofd Startup

Grid Service Interfaces

Grid File/Metadata Catalogue

Client retrieves list
of logical files (LFN + MSN)

25
Marek Biskup ACAT2005PROOF

Summary

■ ROOT is a powerful analysis framework with very efficient
data storage mechanisms.

■ PROOF works well for interactive parallel ROOT data
analysis on a local cluster

� Fully integrated with ROOT – you can use chains with PROOF in
the same way as locally.

� You can use the same Selectors you’ve written for local
processing.

� But it was designed for short-duration interactive queries.
■ PROOF is evolving: we plan to accommodate longer

running queries.
� Disconnect from and reconnect to a running query.
� Non-Blocking queries.
� Dynamic configuration (using the GRID).

26
Marek Biskup ACAT2005PROOF

Questions

