A Test Experiment for a Polarized Positron Source -E-166 at SLAC

Ralph Dollan Humboldt University, Berlin

Outline

- Why polarized beams at the ILC
- The goal of E-166
- The helical undulator
- Positron production
- Photon transmission polarimetry
- The E-166 setup
- Data taking
- First results on photon and positron asymmetries

Wy both beams polarized at the ILC?

- increased signal to background in studies of SM-Physics
- enhancement of the effective luminosity
- Precise analysis of many kinds of non-standard couplings (larger reach for non-SM physics searches)
- higher effective polarization
- improved accuracy in measuring the polarization

R. Dollan

Example - Effective Polarization

Error scales with $1-P_{eff}$

Effecitve polarization for various e- and e+ polarizations:

	$P_e^{-} = +/-0.8$			$P_e^{-} = +/-0.9$		
P_e^+	0	-/+ 0.4	-/+ 0.6	0	-/+ 0.4	-/+ 0.6
P _{eff}	0.80	0.91	0.95	0.90	0.95	0.97
1- P _{eff}	0.20	0.09	0.05	0.10	0.05	0.03

25/11/05

R. Dollan

Eff. Polarization (e- Pol. = 90%)

25/11/05

1

R. Dollan

Selectron production in e^+e^-

E-166

- Demonstration experiment to proof the possibility, to produce polarized positrons using a helical undulator
- Collaboration of >50 people from 3 continents
- In the final focus test beam (FFTB) at SLAC with ~50 GeV (unpolarized) electrons
- 1 m long helical undulator produces circular polarized photons
- Conversion of photons to positrons in thin W-target
- Measurement of polarization of photons and positrons by Photon transmission method

Undulator Principle

- electrons traverse periodic magnetic structure
- photons are emitted

The helical Undulator

Undulator Parameters

wound left handed

Parameter	Value
Period λ_u	2.54mm
On axis field	0.76 T
E_{yc}	9.4 MeV
Feeding current	2.3 kA
Heating/pulse	~3 degC

r_u Undulator aperture 0.88 mm

 $E_{\gamma c} \sim rac{E_{beam}}{\lambda_u}$

25/11/05

R. Dollan

Photon Energy and Polarization

Undulator Windings

R. Dollan

The Positron Production Target

Production Efficiency

thickness

Expected Polarization

Expected positron polarization vs. positron energy

25/11/05

)5

R. Dollan

 $\sigma_{comp} = \sigma_0 + P_{\gamma} P_e \sigma_{pol}$ $\sigma_{tot} = \sigma_{phot} + \sigma_{comp} + \sigma_{pair}$ with

$$\sigma_{tot} = \sigma_{phot} + \sigma_{comp} + \sigma_{pair} \qquad \text{with} \qquad \sigma_{comp} = \sigma_0 + P_{\gamma} P_e \sigma_{pol}$$

$$T^{\pm}(L) = e^{-nL\sigma} = e^{-nL(\sigma_{phot} + \sigma_{pair} + \sigma_0)} e^{\pm nLP_{\gamma}P_e\sigma_{pol}}$$
 Transmission

$$\sigma_{tot} = \sigma_{phot} + \sigma_{comp} + \sigma_{pair} \qquad \text{with} \qquad \sigma_{comp} = \sigma_0 + P_{\gamma} P_e \sigma_{pol}$$

$$T^{\pm}(L) = e^{-nL\sigma} = e^{-nL(\sigma_{phot} + \sigma_{pair} + \sigma_0)} e^{\pm nLP_{\gamma}P_e\sigma_{pol}}$$
 Transmission

$$\delta(L) = \frac{T^{+} - T^{-}}{T^{+} + T^{-}} \approx nLP_{e}P_{\gamma}\sigma_{pol} \qquad \text{Asymmetry}$$

25/11/05

R. Dollan

$$\sigma_{tot} = \sigma_{phot} + \sigma_{comp} + \sigma_{pair} \qquad \text{with} \qquad \sigma_{comp} = \sigma_0 + P_{\gamma} P_e \sigma_{pol}$$

$$T^{\pm}(L) = e^{-nL\sigma} = e^{-nL(\sigma_{phot} + \sigma_{pair} + \sigma_0)} e^{\pm nLP_{\gamma}P_e\sigma_{pol}}$$
 Transmission

$$\delta(L) = \frac{T^{+} - T^{-}}{T^{+} + T^{-}} \approx nLP_{e}P_{\gamma}\sigma_{pol} \qquad \text{Asymmetry}$$

 $P_{\gamma} = \frac{\delta}{nL\sigma_{pol}P_e} = \frac{\delta}{A_{\gamma}P_e}$

.

25/11/05

R. Dollan

20

Photon Polarisation

- Magnetization of the analyzer magnets flipped
- compare two states

E166 measures :

$$Asym = \frac{Sig(-) - Sig(+)}{Sig(-) + Sig(+)}$$

25/11/05

R. Dollan

Expected Asymmetries

Positron Energy E _e + (MeV)	Positron Polarisation P _e + (%)	Positron Asymmetry δ (%)
3	42	0.55
4	61	0.84
5	69	0.82
6	78	0.87
7	84	0.93
8	77	0.82
9	64	0.63
10	68	0.66

Expected asymmetries power versus positron energy

G3 simulation based on the experimental setup of the proposal

Most challenging task for E166 was to measure asymmetries ≤1% in the CsI - Calorimeter

25/11/05

R. Dollan

E-166 in the FFTB

×

CUR

R. Dollan

E166 setup in the FFTB

E166 setup in the FFTB

25/11/05

5

R. Dollan

The Spectrometer

General view to the undulator set, pulser and hydraulic system.

25/11/05

R. Dollan

Setup

Bending Magnets

Solenoid

Analyzing Magnet

Helical • Undulator

25/11/05

R. Dollan

Setup

25/11/05

R. Dollan

The CSI-Calorimeter

3x3 CsI crystals in a brass housing

25/11/05

R. Dollan

The CSI-Calorimeter

Photo diodes

- $\boldsymbol{\cdot}$ every crystal is read out by 2 Si-PD's
- we are reading analog signals

R. Dollan

CsI - Calorimeter Readout

Readout 2

Calibration Procedure

Data Taking

- Original plan: two running periods in October 2004 and January 2005
- June 2005: first run of E-166
- September 2005: second run

Data Taking

- Original plan: two running periods in October 2004 and January 2005
- June 2005: first run of E-166
- September 2005: second run

Data taking scheme:

- Beam energy 46.6 GeV
- 10 Hz beam
- Undulator at 10 Hz
- Every 2nd pulse undulator off time
- -> "undulator on"-event followed by "undulator off"-event

Collected Positron Data

Spectrometer set for	No. of beam pulses collected
5.6 MeV	2.0 *10 ⁵
5.2 MeV	3.1 *10 ⁶
3.7 MeV	1.2 *106
4.5 MeV	1.2 *106
6.0 MeV	1.2 *10 ⁶
6.7 MeV	1.0 *106

Combined June- and September run

25/11/05

R. Dollan

n

Collected Positron- and Electron Data

Spectrometer set for	No. of beam pulses collected
5.6 MeV	2.0 *10 ⁵
5.2 MeV	3.1 *10 ⁶
3.7 MeV	1.2 *10 ⁶
4.5 MeV	1.2 *10 ⁶
6.0 MeV	1.2 *10 ⁶
6.7 MeV	1.0 *10 ⁶
6.0 MeV	6.9 *10 ⁵

Combined June- and September run

25/11/05

R. Dollan

n

How we obtain the Asymmetries

OLDT.

- substract backgroundfrom signalevents
- average over certain bg-range

Е

- 166

International Polarized Positron Collaboration

- test statistical methods with toy-monte carlo
- calculate the asymmetry between the two magnetization states

10 MeV γ

~~~~

Photon Asymmetries

## preliminary

Photon asymmetries from June data measured with 2 Detectors:

Photon Calorimeter : 3.52 % ± 0.15 %

Aerogel Counter : 3.50 % ± 0.40 %

(stat. errors only)





R. Dollan

Photon Asymmetries

## preliminary

| Photon asymmetries f<br>measured with 2 Dete | Expected from G3 Sim.<br>(46.6 GeV beam energy): |        |
|----------------------------------------------|--------------------------------------------------|--------|
| Photon Calorimeter :                         | 3.52 % ± 0.15 %                                  | 3.22 % |
| Aerogel Counter :                            | 3.50 % ± 0.40 %                                  | 3.54 % |
|                                              | (stat. errors only)                              |        |









Positron Asymmetries



#### Positron Asymmetries + Electron Asymmetry



### Summary

- E-166 produced data with good quality
- The helical undulator was working
- We did a first analysis of the data and the asymmetries are in the expected range
- It still takes some time to come up with a number for the photon and positron polarization
- More simulation work has to be done
- The data analysis is ongoing...



