Exotic Long-lived Particles at ATLAS

David Milstead Stockolms Universitet

Results based on: *Expected Performance of the ATLAS Experiment - Detector, Trigger and Physics*, ATLAS Collaboration: arXiv:0901.0512

SMPs

• SMP

- exotic heavy particle
- decaying away from IP
- metastable
- Host of SUSY scenarios (RPC,RPV)
- Universal extra dimensions
- Leptoquarks...
- Primary aim
 - Inclusive search strategies with well chosen model points
 - Sufficient information to discover and extract quantum numbers of a SMP.

SMP	LSP	Scenario	Conditions
$\tilde{\tau}_1$	$\tilde{\chi}_1^0$	MSSM	$\tilde{\tau}_1$ mass (determined by $m^2_{\tilde{\tau}_{L,R}}, \mu, \tan\beta,$ and $A_{\tau})$ close to $\tilde{\chi}_1^{1}$ mass.
	\tilde{G}	GMSB	Large N, small M, and/or large $\tan \beta$.
		ĝMSB	No detailed phenomenology studies, see [23].
		SUGRA	Supergravity with a gravitino LSP, see [24].
	$\tilde{\tau_1}$	MSSM	Small $m_{\tilde{\tau}_{L,R}}$ and/or large $\tan\beta$ and/or very large $A_{\tau}.$
		AMSB	Small m_0 , large tan β .
		\tilde{g} MSB	Generic in minimal models.
$\tilde{\ell}_{i1}$	\tilde{G}	GMSB	$\tilde{\tau}_1$ NLSP (see above). \tilde{e}_1 and $\tilde{\mu}_1$ co-NLSP and also SMP for small $\tan\beta$ and $\mu.$
	$\tilde{\tau_1}$	ĝMSB	\tilde{e}_1 and $\tilde{\mu}_1$ co-LSP and also SMP when stau mixing small.
$\tilde{\chi}_{1}^{+}$	$\tilde{\chi}_1^0$	MSSM	$m_{\tilde{\chi}_1^+} - m_{\tilde{\chi}_1^0} \lesssim m_{\pi^+}$. Very large $M_{1,2} \gtrsim 2 \text{ TeV} \gg \mu $ (Hig gsino region) or non-universal gaugino masses $M_1 \gtrsim 4M_2$ with the latter condition relaxed to $M_1 \gtrsim M_2$ for $M_2 \ll \mu $ Natural in O-II models, where simultaneously also the \tilde{g} can be long-lived near $\delta_{\text{GS}} = -3$.
		AMSB	$M_1 > M_2$ natural. m_0 not too small. See MSSM above.
\tilde{g}	$\tilde{\chi}_1^0$	MSSM	Very large $m_{\tilde{q}}^2 \gg M_3$, e.g. split SUSY.
	\tilde{G}	GMSB	SUSY GUT extensions [25-27].
	\tilde{g}	MSSM	Very small $M_3 \ll M_{1,2},$ O-II models near $\delta_{\mathrm{GS}} = -3.$
		GMSB	SUSY GUT extensions [25-29].
\tilde{t}_1	$\tilde{\chi}_1^0$	MSSM	Non-universal squark and gaugino masses. Small $m_{\tilde{q}}^2$ and $M_3,$ small $\tan\beta,$ large $A_t.$
\tilde{b}_1			Small $m_{\tilde{q}}^2$ and M_3 , large $ an eta$ and/or large $A_b \gg A_t$.

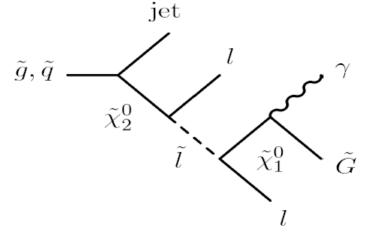
Table 1

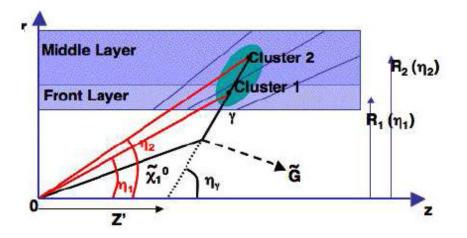
Brief overview of possible SUSY SMP states considered in the literature. Classified by SMP, LSP, scenario, and typical conditions for this case to materialise in the given scenario. See text for details.

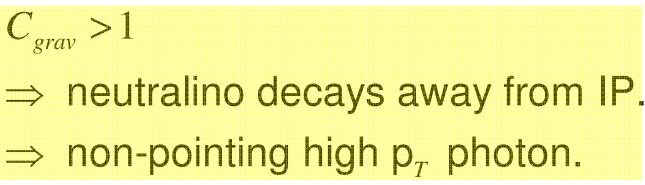
hep-ph/0611040

Classification

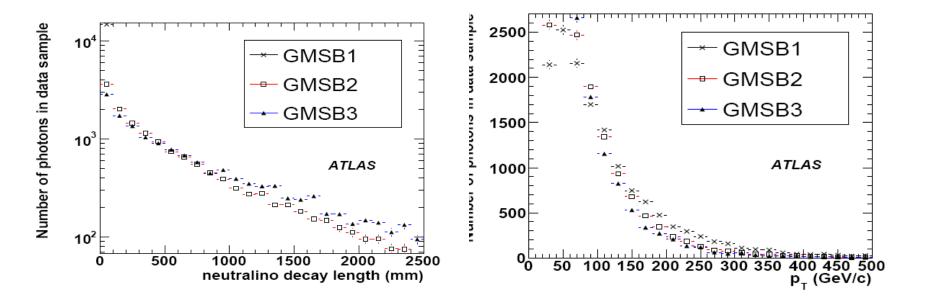
Particle	Charge
Slepton, free quark	electric
Gluino, squark, KK quark	Colour (triplet, octet), electric
Magnetic monopole	Magnetic


Host of predicted long-lived exotica

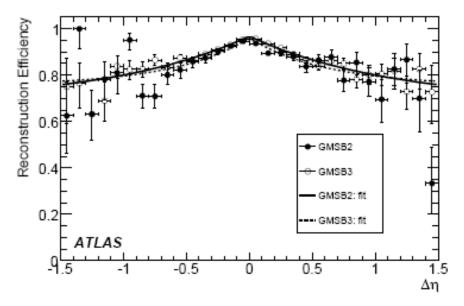

+ charge combinations.


Stable: correct for detector interactions and for late response of propagating particle. Long-lived but decaying: jet, lepton, photon topologies

Non-pointing photons GMSB scenarios - neutralino NLSP.


name	NLO (LO) σ [pb]	Λ [TeV]	M_m [TeV]	CG	cτ [mm]	$M_{\tilde{\chi}_1^0}$ [GeV]
GMSB1	7.8 (5.1)	90	500	1.0	1.1	118.8
GMSB2	7.8 (5.1)	90	500	30.0	$9.5 \cdot 10^{2}$	118.8
GMSB3	7.8 (5.1)	90	500	55.0	$3.2 \cdot 10^{3}$	118.8

Non-pointing photon distributions


Criteria:
Decay within inner tracking detector
$p_T > 20 \text{ GeV}; \eta < 2.5$
Lepton pairs of opposite and same
sign (OSSF).

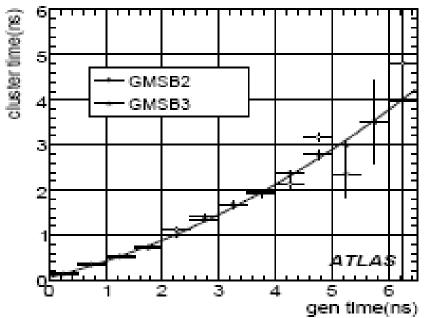
Nγ	N _{OSSF}	Signal	\sum Background	Sig	N _W	N _Z	N _{tī}
0	0	825.2	929.6	27.1	274.4	21.0	632.8
0	1	265.2	73.0	33.2	8.7	1.4	63.0
1	0	255.8	51.7	35.7	19.5	2.0	30.1
1	1	68.6	1.4	58.6	0.2	0.0	1.2
2	0	12.5	0.1	12.5	0.0	0.0	0.1
2	1	4.7	0.0	4.7	0.0	0.0	0.0

1fb⁻¹

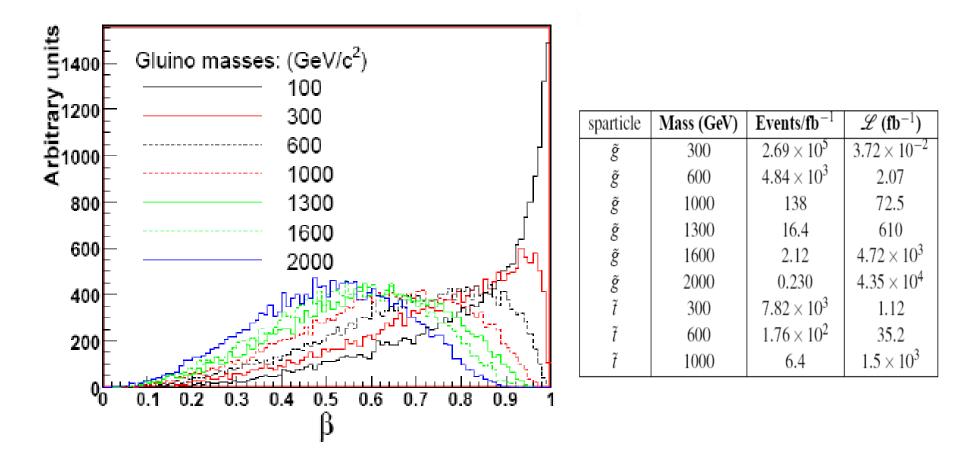
Experimental issues

Reconstruction of non-pointing objects

$$\begin{aligned} \Delta \eta = \eta_{true} - \eta_{rec} \\ > 90\% \text{ for } |\Delta \eta| \le 0.25 \\ \text{Falls to } \sim 75\% \text{ for } |\Delta \eta| \sim 0.5 \end{aligned}$$

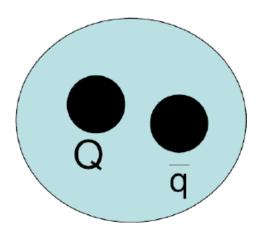

• Standard software provides good reconstruction.

Neutralino lifetime determination


Optimise photon selection.

Use calorimeter timing.

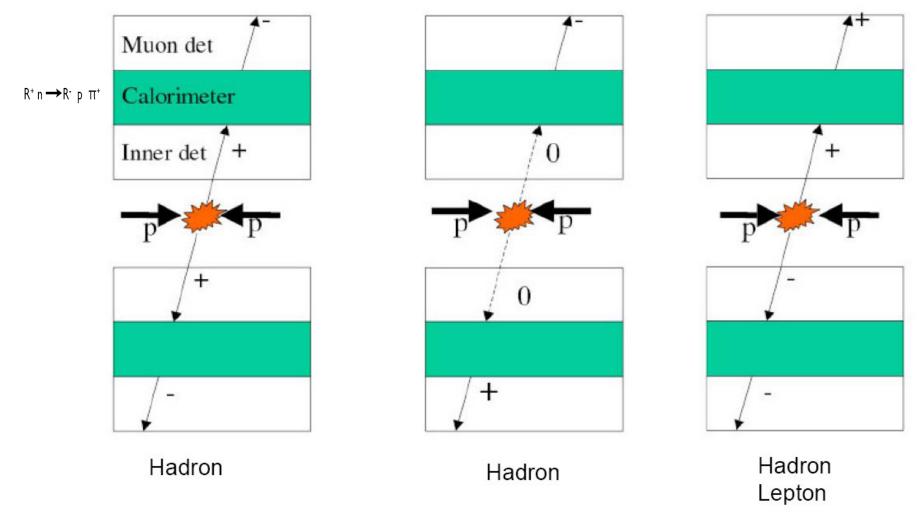
Complementary approach to measure extrapolated *z*-displacement wrt interaction point



Stable Exotic particles

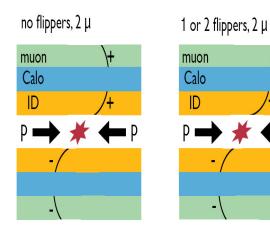
Two major experimental issues: slowness and hadronic scattering

Heavy hadron scattering

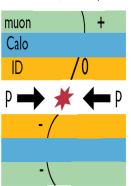

Heavy exotic meson from massive exotic colour triplet Q and SM quark \overline{q} . $M_Q \approx M_H = 200 \text{ GeV } E = 1 \text{ TeV}$ $\Rightarrow \gamma = E_{M} = 5$ $M_q \approx 0.2 \text{ GeV} \Rightarrow \text{KE}_q = (\gamma - 1)M_q \approx \text{GeV}$

Heavy quark doesn't interact

Low energy collision between SM quark in material.

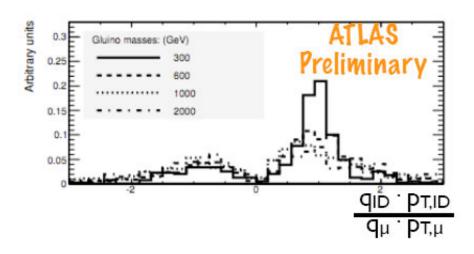

Recent ref: hep-ex/0404001 (A.C. Kraan)

Event topologies for exotic hadrons and leptons



Understanding hadronisation and scattering in material is crucial

R-hadron selections


Cuts

One hard muon track with no inner tracking link.

Two back-to-back ID tracks with TRT hits satisfying high threshold/low threshold < 0.05

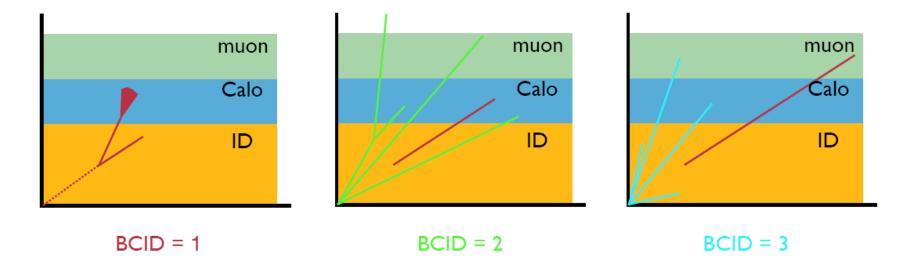
Two back-to-back like-sign muons

At least one hard muon track with hard matching inner track with opposite charge

Sample	Rate (Events/fb ⁻¹)
300 GeV gluino	6.44 x 10 ³
600 GeV guino	(2.70×10^3)
1000 GeV guino	10.7
1300 GeV guino	1.20
1600 GeV guino	0.147
2000 GeV guino	1.26 x 10 ⁻²
300 GeV stop	70.0
600 GeV stop	3.9
1000 GeV stop	0.1
J5	0.893
J8	2.26 x 10 ⁻³
Z → μμ	0.776

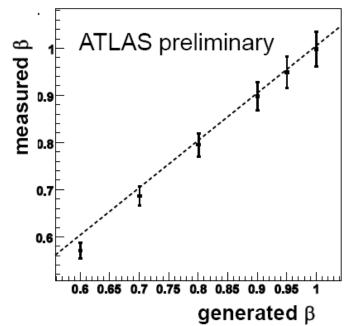
ATLAS preliminary

LHC - ATLAS

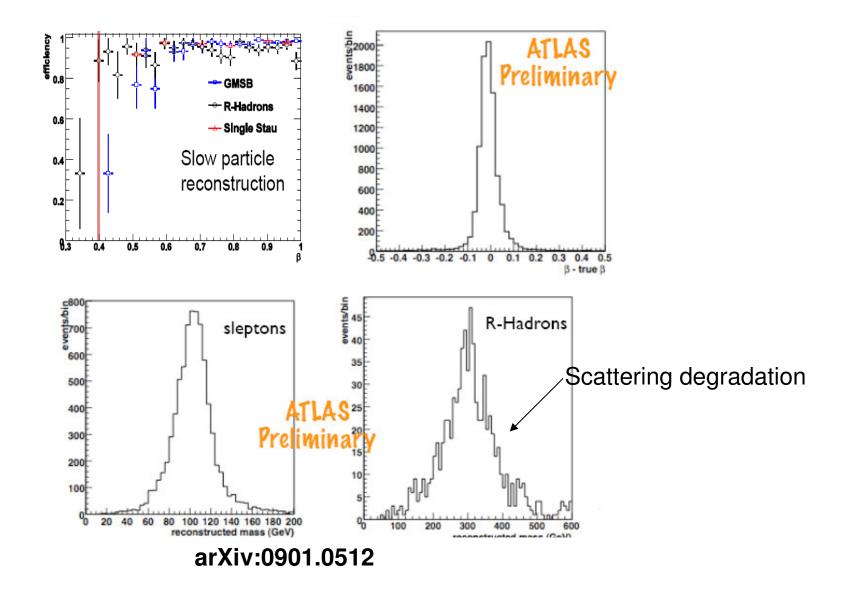

•In ATLAS event fragments from different parts of the detector are assigned to a particular bunch crossing (BC) using the BC Identifier (BCID).

• ATLAS: max. path 20m, bunch crossing period= 25ns.

•3 events can co-exist at the same time in the detector.

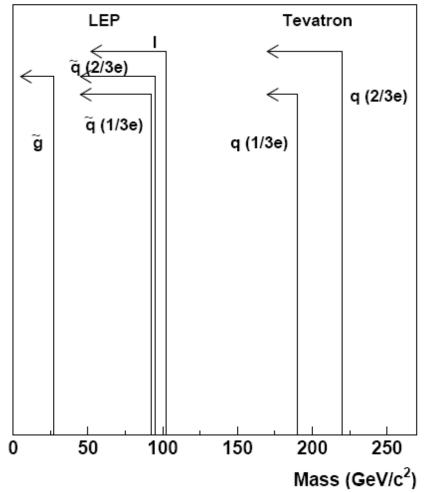

•Assumption: particles traverse the detector with β ~1.

•Hits from a slower particle may be lost or labelled with the wrong BCID.



Slow particle selection

- Added TOF calculation to L2
 muon trigger
- Mass calculation
- Slow particle section based on mass and momentum
- Recover cases where no inner track link present
- Measure speed and mass in special offline reconstruction software


Reconstructing slow particles

Summary

- Long-lived exotic particles anticipated in many scenarios of exotic physics
 - Non-pointing photons
 - R-hadrons
 - Sleptons
- Strategy for inclusive searches allowing discovery and identification of exotic particle
- Challenge reconstruction and trigger
- Work shown is a subset of ongoing ATLAS work

Limits on stable particles

- LEP limits tend to use inner tracking info only
- Tevatron assumes a "heavy muon-like object"
- What is the stable gluino limit ?