Digitization and hit reconstruction for silicon tracker
in MarlinReco

S.Shulga and T.Ilicheva *

Joint Institute for Nuclear Research
141980 Dubna, Moscow reg., Russia

Fr.Scorina Gomel State University
245280 Gomel, Republic of Belarus

The program SiliconDigi, implementing a new Marlin processors for digitization and
clustering in silicon tracker of LDC, is presented. Processors include member of class
Detector which contains digitizer and clusterizer. Vector of samples of class DetUnit
(simplest detector unit) are initialized by using GEAR interface. Digitizer and clus-
terizer take detector units to transform collection of simulated hits to collection of
raw data and reconstructed hits for each detector unit. Current code contains barrel
subdetectors. Codes of classes Digitizer and Clusterizer are taken from CMS software.

1 Design of package SiliconDigi

Simplest object of digitization is readout unit. The detector is a set of identical readout
units. The detector should comprise process of digitization and clustering, receiving from
the outside and making for external use corresponding hit information. It means that codes
of digitizer and clusterizer should be parts of class describing detector.

To have flexible package it is useful to separate persistent part of the program (MAR-
LIN [2] processors) from developing part. Developing part of codes describes detector includ-
ing vector of detector units, interface to GEAR [2] initializing detector units, digitizer and
clusterizer. Detector unit contains LCIO [2] collections (SimTrackerHit, TrackerRawData
and TrackerHit) which are initialized or produced by processors.

That is why package SiliconDigi [3] consist of three sub packages (sub package in sense of
MarlinReco [2]): SiDetector (includes classes Detector, DetUnit, SiPizelDet UnitDigitizer and
SiTrkDetUnitClusterizer), SiDigi (class SiTrkDigiProcessor) and SiClustering (class SiTrk-
ClusterProcessor).

Class Detector is container of layers and samples of DetUnit. Main method of Detector
performs initialization of DetUnit by using GEAR xml-file. Abstract base class DetUnit
is container of simulated/raw/reconstructed and temporary hits. DetUnit can read/write
standard LCIO collection of hits. Detector contains digitizer and clusterizer. The object to
be digitized/clusterized is a sample of DetUnit. Codes of digitizer and clusterizer are taken
from CMS software [4, 5, 6, 7, 8, 9].

First function of digitizer is finding of ionization points in detector unit. Interval between
hit entry and exit points is divided in N segments by using parameter of length of segment
(0.01 mm by default). This function creates ionization points which contain information
about positions of ionization points and energy loss in units of number of electrons. Energy
losses are defined by using Landau distribution in thin silicon layer.

*This work is partially supported by BMBF(Germany).

LCWS/ILC 2007

Next step of digitizer is transformation of ionization points to collection points defined
at charge collection plane where sensor pixels are placed.

Number of collection points is equal number of ionization points. Two physical phenom-
ena are simulated at this step: Lorenz drift with the fixed Lorenz angle and diffusion around
the drift direction. The collection point contains the calculated value of Gaussian charge
diffusions along X and Y directions (6x X oy). Each collection point is mapped by pixel
map to find low and upper bounds of fired pixels. Cluster of fired pixels is defined with sizes
3o0x % 3oy. In each fired pixel 2-dimensional integral is calculated according to Gaussian
distribution of charge for each collection point separately. Charge fractions are summarized
over the collection points for given fired pixel. For all simulated hits charge fractions are
summarized over the simulated hits. All fired pixels are collected in map<int channel, dou-
ble charge> where channel is packed 2-dimensional pixel number, charge is full charge from
all simulated hits in the event. Map of signals is a last output result of digitizer. Digitizer
translates this map to the sample of DetUnit. DetUnit modifies signal map adding noises
and killing some channels according to the inefficiency. Method DetUnit::add_noise adds
two types of noises. First one calculates noises in each hit pixels around zero by Gaussian
distribution with 0,45 given by user parameter. After that noise charge is added to the
hit pixel. Secondly, it calculates noise in not-hit pixels by so called noiser. The noises are
ruled by two parameters: noise RMS in units of electrons and threshold in terms of 0;,0ise-

Method of pixel inefficiency kills some pixels, double columns of pixels or full readout
chips. Two parameters are used to find readout chip inefficiency: sizes of readout chips along
X and Y direction in units of number of pixels. One can introduce different inefficiencies for
different layers.

The clustering is performed on a matrix with size which is equal the size of the pixel
detector. Each cell contains the ADC count of the corresponding pixel. The search starts
from seed pixels, i.e. pixels with sufficiently large amplitudes. Clusters are set of neighbor
pixels including pixels which touched by corners.

2 Thresholds and efficiency of hit reconstruction

It is convenient to use oy,.ise as an unit of collected charge. Then it is possible to define
admissible thresholds, expressing them in terms of op,4s¢. In the beginning we find a thresh-
old defining a signal in the channel (pixel). Clearly, that this threshold should make few
Onoises t0 avoid a plenty of false fired pixels. Simultaneously big threshold reduces efficiency
of registration of hits.

To define a pixel threshold, we shall construct dependence of efficiency from value of
pixel threshold, setting the threshold of seed pixels and a threshold of the cluster charge
as equal to zero (seed pixel is a pixel from which the clustering is started). Noises also
are switched off. From figure 1 (a) we see, that without essential decrease in efficiency of
registration of a hit it is possible to choose pixel threshold not more than 40 ,.;sc-

After that to build second plot (dependence of efficiency from seed threshold) the pixel
threshold is fixed to 40p0ise, Cluster threshold is set to zero. Seed threshold can be more
than pixel threshold. Maximal value of seed threshold will be set 50p,0ise-

Last plot is dependence of efficiency from cluster threshold with minimal pixel and seed
thresholds which were found by previous pictures. Cluster threshold can be more then seed
threshold. Maximal cluster threshold is restricted by decreased efficiency and will be set not
more than 60 ,,0ise-

LCWS/ILC 2007

> 0.98F
0.96
0.94F
0.92

0.88f
0.86f
0.84f

Hit reconstruction efficienc
o
©
T

0.82|
0.8
0.78F

0.76ba oy

o
©
T

Hit reconstruction efficiency
[o
S ©
T T

0.6~

Hit reconstruction efficiency
=) o)
S 92 » 9 o
G o & o &
T T T T T

o
3

o
o

o
o
T

150x150
=

Pixel threshold (in noise RMS units)

4 6

8 10 12 14 16 18 20
Seed threshold (in noise RMS units)

10 15

20 25

30

Cluster threshold (in noise RMS units)

Figure 1: Efficiency of hit reconstruction as function of pixel, seed and cluster thresholds
for pixel sizes 25 x 25, 50 x 50, 100 x 100 and 150 x 150um?.

3 Conclusion

Pixel size, | Reconstructed | True
pm? hits, % hits, %
25 x 25 94.3 93.5
50 x 50 89.8 89.6
100 x 100 86.9 86.8
150 x 150 54.0 53.9

Table 1: Hit reconstruction efficiency for different
sizes of pixels. Pixel, seed and cluster thresholds

Classes Detector, DetUnit and Bar-
relDetUnit are developed to use in dig-
itization and clustering processors for
silicon tracker in framework of Marlin-
Reco. Class Detector includes pixel dig-
itizer and pixel clusterizer for rectangu-
lar detector units. Pixel, seed and clus-
ter thresholds are investigated. The ta-

ble 1 contains hit reconstruction effi-
ciencies for different sizes of pixels with

equal 40 oise, HOnoise and 6o pnoise correspondingly. thresholds which were found above.

References
[1] Slides:
http://ilcagenda.linearcollider.org/contributionDisplay.py?contribId=311&sessionId=74&confId=1296
http://ilcsoft.desy.de/portal/software_packages
http://www-zeuthen.desy.de/lc-cgi-bin/cvsweb.cgi/SiliconDigi/?cvsroot=marlinreco;only_with_tag=v00-04
S.Cucciarelli, D.Kotlinsky, T.Todorov, CMS Note 2002/049
S.Cucciarelli, D.Kotlinsky, CMS IN 2004/014
D.Kotlinski, Pixel Software Workshop, 11-15/01/07 (CMS)
G.Giorgiu, Pixel Workshop, 01/12/07 (CMS)
D.Kotlinski, Pixel Software meeting, 19/09/06 (CMS)

S.Shulga, ILC software and Tools = Workshop, LAL-Orsay,
http://ilcagenda.linearcollider.org/conferenceDisplay.py?confId=1446

24 May, 2007,

LCWS/ILC 2007

