# Four-Loop QCD Corrections and Master Integrals for the $\rho$ -Parameter

M. Faisst<sup>1</sup>, P. Maierhöfer<sup>1</sup> and C. Sturm<sup>2</sup> \*

1- Institut für Theoretische Teilchenphysik, Universität Karlsruhe, D-76128 Karlsruhe - Germany

2- Dipartimento di Fisica Teorica, Università di Torino & INFN, Sezione di Torino - Italy

The calculation of the four-loop QCD corrections to the electroweak  $\rho$ -parameter arising from top- and bottom-quarks of the order  $\mathcal{O}(G_F m_t^2 \alpha_s^3)$  is discussed. In particular the computation of the numerous master integrals in the standard and  $\varepsilon$ -finite basis is addressed.

## 1 Introduction

The  $\rho$ -parameter measures the relative strength of the charged and the neutral current and is equal one at lowest order perturbation theory in the Standard Model. Higher order corrections induce a shift in the lowest order value, which can be related to the transversal parts of the W- and Z-boson self-energies at zero momentum transfer

$$\delta\rho = \frac{\Pi_T^Z(0)}{M_Z^2} - \frac{\Pi_T^W(0)}{M_W^2},\tag{1}$$

where  $M_Z$  and  $M_W$  are the Z- and W-boson masses, respectively. The one-loop correction has first been evaluated in Ref. [2] and was used in order to establish a limit on the mass splitting within one fermion doublet. For a top-bottom fermion-doublet the dominant shift to the  $\rho$ -parameter is given by

$$\delta\rho_1 = 3 \frac{G_F m_t^2}{8\sqrt{2} \pi^2} = 3 x_t, \tag{2}$$

where the bottom quark mass has been neglected, hence it is quadratic in the top-quark mass  $m_t$ . The symbol  $G_F$  denotes the Fermi coupling constant.

The  $\rho$ -parameter enters in numerous physical quantities, e.g. it is related to the indirect prediction of the W-boson mass and to the weak mixing angle.

The perturbative expansion in the strong coupling constant  $\alpha_s$  defined in the  $\overline{\text{MS}}$ -scheme for six flavors is given by:

$$\delta \rho^{\overline{\mathrm{MS}}} = 3x_t \sum_{i=0}^{3} \left(\frac{\alpha_s}{\pi}\right)^i \delta \rho_i^{\overline{\mathrm{MS}}}.$$
(3)

Here  $x_t$  is expressed in terms of the  $\overline{\text{MS}}$  quark mass  $m_t \equiv m_t(\mu)$  at the scale  $\mu = m_t$  and  $\alpha_s$  at the same scale. The two-loop QCD corrections [3–5] to the  $\rho$ -parameter have been calculated about 20 years ago and the three-loop QCD corrections [6,7] more than ten years

<sup>\*</sup>Talk given at the International Linear Collider Workshop, Hamburg, 2007 [1].

ago. Also important are two-loop [8–12] and three-loop electroweak effects proportional to  $x_t^2$  and  $x_t^3$ , which have been determined in Refs. [13, 14] as well as three-loop mixed electroweak/QCD corrections of order  $\alpha_s x_t^2$ , which have been calculated in Ref. [14].

In a first step at four-loop order in perturbative QCD the singlet contributions have been computed in Ref. [15]. They are characterized by the fact that the external current couples to two different closed fermion loops, whereas for the non-singlet contributions the external current couples to the same closed fermion loop. Sample diagrams for both types of contributions are shown in Fig. 1.

$$Z_{\text{verte}} \underbrace{T_{\text{verte}}}_{t} \underbrace{T_{\text{verte}}}_{\text{verte}} \underbrace{T_{\text{verte}}}_{t} \underbrace{T_$$

Figure 1: The first two diagrams are sample diagrams for the singlet contribution, whereas the third and fourth diagram are non-singlet type diagrams.

In the following Section 2 the calculation of the four-loop QCD corrections to the  $\rho$ -parameter from top- and bottom-quarks, in particular the non-singlet contribution, shall be discussed and we outline our computation of the appearing master integrals. In Section 3 we present the result and close with the summary and conclusions in Section 4.

## 2 Methods of calculation

The calculation of the transversal parts of the W- and Z-boson self-energies at zero momentum leads to the determination of four-loop tadpoles. In order to reduce all appearing integrals to a smaller set of master integrals the traditional Integration-by-parts(IBP) method has been employed in combination with Laporta's algorithm [16,17], which has been implemented in a FORM [18–20] based program, which uses Fermat [21] for the simplification of the polynomials in the space-time dimension d. The number of surviving master integrals is however with 63 quite sizable. The master integrals in the standard basis are shown in Fig. 2.

## 2.1 The master integrals in the standard basis

These master integrals can be classified into three groups. The first group of 13 integrals  $\{T_{4,1}, T_{5,1}, T_{5,2}, T_{5,3}, T_{5,4}, T_{6,3}, T_{6,4}, T_{6,1}, T_{6,2}, T_{7,1}, T_{7,2}, T_{8,1}, T_{9,1}\}$  have already been used in previous calculations, e.g. in the determination of moments of the vacuum polarization function [22,23] or the decoupling relations [24–26]. All of them have been determined with the help of the method of difference equations [16,17,27–29] in Ref. [30] and subsequently in Ref. [31], where the method of  $\varepsilon$ -finite basis has been employed. Some of these master integrals or particular orders in the  $\varepsilon$ -expansion have also been found in Refs. [15,29,32–38] analytically or numerically.

The second set of 12 master integrals  $\{T_{5,5}, T_{5,6}, T_{5,7}, T_{6,5}, T_{6,6}, T_{6,7}, T_{6,8}, T_{7,3}, T_{7,4}, T_{9,2}, T_{5,10}, T_{7,16}\}$  is "simple" in the sense, that they are factorized and can be found via a repeated application of the well-known analytical formulas for a one-loop massless propagator and a one-loop massive tadpole. Less simpler diagrams like  $T_{7,4}$  can be extracted from [39–41] while the most complicated non-planar one  $T_{9,2}$  can be obtained from [42, 43].



Figure 2: The master integrals in the standard basis, which come out naturally while solving the linear system of IBP equations with the help of Laporta's Algorithm and which have a minimal number of lines, a minimal number of dots and irreducible scalar products. Solid (dashed) lines denote massive (massless) propagators. The first index i of the topologies  $T_{i,j}$  denotes the number of lines, whereas the second one j enumerates the topologies with the same number of lines.

The last group of remaining 38 master integrals we solved in Ref. [44] with the help of Padé approximations in the  $\varepsilon$ -finite basis or by means of the method of difference equations; results for the master integrals in the standard basis have also been determined in Ref. [50].

#### 2.2 The master integrals in the $\varepsilon$ -finite basis

One problem, which in general arises while solving the linear system of IBP-equations is, that a division by (d-4) can occur. This can lead to spurious poles in front of a master integral. Each master integral which has a spurious pole as coefficient needs to be evaluated

deeper in its  $\varepsilon$ -expansion, which is increasingly tedious. As a result of this it can be useful to select a new  $\varepsilon$ -finite basis of master integrals [31], whose coefficients in the space-time dimension  $d = 4 - 2\varepsilon$  are finite in the limit  $\varepsilon \to 0$ . The  $\varepsilon$ -finite basis has the advantage, that the members only need to be evaluated up to the finite order in the  $\varepsilon$ -expansion.

Following the prescription of Ref. [31] an  $\varepsilon$ -finite basis has been constructed in Ref. [44] for the master integrals of Fig. 2, where the integrals  $\{T_{4,1}, T_{5,1}, T_{5,3}, T_{6,3}, T_{5,5}, T_{5,6}, T_{5,7}, T_{6,5}, T_{6,6}, T_{6,7}, T_{6,8}, T_{7,3}, T_{7,4}, T_{9,2}\}$  have been excluded from the construction, since they are known to sufficiently high order in the  $\varepsilon$ -expansion. In order to remove spurious poles in front of the remaining master integrals the integrals  $\{T_{5,2}, T_{5,4}, T_{6,4}, T_{6,1}, T_{6,2}, T_{7,1}, T_{7,2}, T_{5,10}, T_{5,8}, T_{5,9}, T_{6,9}, T_{6,10}, T_{6,12}, T_{6,13}, T_{6,14}, T_{6,15}, T_{6,16}, T_{6,17}, T_{6,18}, T_{6,19}, T_{7,6}, T_{7,11}, T_{7,14}, T_{7,15}, T_{9,4}\}$  needed to be replaced. The master integrals in the  $\varepsilon$ -finite basis have been computed with a semi-numerical method based on Padé-approximations [31, 45–48]. The pole-part could be extracted completely analytically. The relations between the two bases can be used in order to compute master integrals in the standard basis from the results of the  $\varepsilon$ -finite one. This allows also to obtain analytical information for the master integrals in the standard basis from the  $\varepsilon$ -finite one. In addition one can also derive special relations among particular orders of different master integrals, e.g.

$$\frac{45\zeta_4}{2} - \frac{166\zeta_3}{9} + \frac{1685\zeta_2}{48} - \frac{9\sqrt{3}s_2}{2} + \frac{11561}{128} = T_{6,18}^{(0)} - T_{6,13}^{(0)}, \qquad (4)$$

which are given in Ref. [44]. They are important, if one wants to compute further orders of the master integrals in the  $\varepsilon$ -expansion analytically. In Eq. (4)  $T_{i,j}^{(0)}$  denotes the constant order in the  $\varepsilon$ -expansion,  $\zeta_n$  is the Riemann zeta-function and  $s_2$  is the Clausen-function  $\operatorname{Cl}_2(\frac{\pi}{3})$ .

#### 3 Result

After having inserted the results for the master integrals into the parameter  $\delta \rho$  and having performed renormalization in  $\overline{\text{MS}}$ -scheme, one obtains the following result [49]:

$$\delta\rho^{\overline{\text{MS}}} = 3x_t \Big( 1 - \frac{\alpha_s}{\pi} 0.19325 + \Big(\frac{\alpha_s}{\pi}\Big)^2 \Big( \underbrace{-4.2072}_{-4.2072} + 0.23764 \Big) + \Big(\frac{\alpha_s}{\pi}\Big)^3 \Big( \underbrace{-3.2866}_{-3.2866} + 1.6067 \Big) \Big). \tag{5}$$

This result has been confirmed in the completely independent work of Ref. [50]. Starting from three-loop order there arise the singlet type diagrams, whose numerical value is shown separately in Eq. (5). The singlet contribution is underlined by the wavy line, whereas the non-singlet contribution is underlined by the solid line. At three-loop order the singletdiagrams completely dominate the numerical correction, if the  $\overline{\text{MS}}$ -definition is adopted for the top-quark mass. At four-loop order the dominance is less pronounced. If the result is expressed in terms of the top-quark pole-mass one obtains for the four-loop contribution  $\delta \rho_3^{\text{pole}} = -93.1501$ , which corresponds to a small shift of around 2 MeV in the W-boson mass. This is well below the expected precision of future experiments and the result based on the three-loop calculation is stabilized.

## 4 Summary and conclusion

The four-loop QCD corrections from top- and bottom-quarks of order  $\mathcal{O}(G_F m_t^2 \alpha_s^3)$  to the  $\rho$ -parameter have been computed. All appearing loop-integrals have been reduced to master

integrals. These have been computed with the help of the method of difference equations in the standard basis or by means of Padé-approximations in the  $\varepsilon$ -finite basis. At least the pole-part of all the master integrals has been determined analytically. The four-loop contribution leads to a small shift in the W-boson mass of around 2 MeV, which is well below the anticipated precision of future experiments.

### Acknowledgments

The work of C.S. was partially supported by MIUR under contract 2006020509\_004 and by the European Community's Marie-Curie Research Training Network under contract MRTN-CT-2006-035505 'Tools and Precision Calculations for Physics Discoveries at Colliders'. This work was supported by the Deutsche Forschungsgemeinschaft in the Sonderforschungsbereich SFB/TR 9 "Computational Particle Physics".

## References

- [1] Slides:
- http://ilcagenda.linearcollider.org/contributionDisplay.py?contribId=411&sessionId=73&confId=1296.
- [2] M. J. G. Veltman, Nucl. Phys. B123 89 (1977).
- $[3]\,$  A. Djouadi and C. Verzegnassi, Phys. Lett. **B195** 265 (1987).
- [4] A. Djouadi, Nuovo Cim. A100 357 (1988).
- [5] B. A. Kniehl, J. H. Kühn and R. G. Stuart, Phys. Lett. **B214** 621 (1988).
- [6] L. Avdeev, J. Fleischer, S. Mikhailov and O. Tarasov, Phys. Lett. B336 560 (1994).
- [7] K. G. Chetyrkin, J. H. Kühn and M. Steinhauser, Phys. Lett. **B351** 331 (1995).
- [8] J. J. van der Bij and F. Hoogeveen, Nucl. Phys. **B283** 477 (1987).
- [9] R. Barbieri, M. Beccaria, P. Ciafaloni, G. Curci and A. Vicere, Phys. Lett. B288 95 (1992).
- [10] R. Barbieri, M. Beccaria, P. Ciafaloni, G. Curci and A. Vicere, Nucl. Phys. B409 105 (1993).
- [11] J. Fleischer, O. V. Tarasov and F. Jegerlehner, Phys. Lett. B319 249 (1993).
- [12] J. Fleischer, O. V. Tarasov and F. Jegerlehner, Phys. Rev. D51 3820 (1995).
- [13] J. J. van der Bij, K. G. Chetyrkin, M. Faisst, G. Jikia and T. Seidensticker, Phys. Lett. B498 156 (2001).
- [14] M. Faisst, J. H. Kühn, T. Seidensticker and O. Veretin, Nucl. Phys. B665 649 (2003).
- [15] Y. Schröder and M. Steinhauser, Phys. Lett. B622 124 (2005).
- [16] S. Laporta and E. Remiddi, Phys. Lett. **B379** 283 (1996).
- [17] S. Laporta, Int. J. Mod. Phys. A15 5087 (2000).
- [18] J. A. M. Vermaseren, "New features of FORM", math-ph/0010025.
- [19] J. A. M. Vermaseren, Nucl. Phys. Proc. Suppl. 116 343 (2003).
- [20] M. Tentyukov and J. A. M. Vermaseren, Comput. Phys. Commun. 176 385 (2007).
- [21] R. H. Lewis, Fermat's User Guide, http://www.bway.net/~lewis/ .
- [22] K. G. Chetyrkin, J. H. Kühn and C. Sturm, Eur. Phys. J. C48 107 (2006).
- [23] R. Boughezal, M. Czakon and T. Schutzmeier, Phys. Rev. D74 074006 (2006).
- [24] K. G. Chetyrkin, J. H. Kühn and C. Sturm, Nucl. Phys. Proc. Suppl. 164 203 (2007).
- [25] K. G. Chetyrkin, J. H. Kühn and C. Sturm, Nucl. Phys. B744 121 (2006).
- [26] Y. Schröder and M. Steinhauser, JHEP 01 051 (2006).
- [27] S. Laporta, Phys. Lett. **B504** 188 (2001).

- [28] S. Laporta, Phys. Lett. **B523** 95 (2001).
- [29] S. Laporta, Phys. Lett. B549 115 (2002).
- [30] Y. Schröder and A. Vuorinen, JHEP 06 051 (2005).
- [31] K. G. Chetyrkin, M. Faisst, C. Sturm and M. Tentyukov, Nucl. Phys. B742 208 (2006).
- [32] D. J. Broadhurst, Z. Phys. C54 599 (1992).
- [33] D. J. Broadhurst, "On the enumeration of irreducible k-fold Euler sums and their roles in knot theory and field theory", hep-th/9604128.
- [34] K. G. Chetyrkin, J. H. Kühn, P. Mastrolia and C. Sturm, Eur. Phys. J. C40 361 (2005).
- [35] B. A. Kniehl and A. V. Kotikov, Phys. Lett. B638 531 (2006).
- [36] E. Bejdakic and Y. Schröder, Nucl. Phys. Proc. Suppl. 160 155 (2006).
- [37] B. A. Kniehl and A. V. Kotikov, Phys. Lett. B642 68 (2006).
- [38] B. A. Kniehl, A. V. Kotikov, A. I. Onishchenko and O. L. Veretin, Phys. Rev. Lett. 97 042001 (2006).
- [39] D. J. Broadhurst, Z. Phys. C32 249 (1986).
- [40] D. I. Kazakov, Theor. Math. Phys. 58 223 (1984).
- [41] I. Bierenbaum and S. Weinzierl, Eur. Phys. J. C32 67 (2003).
- [42] K. G. Chetyrkin and P. B. Baikov, in preparation; see also the transparency of the talk by K.G. Chetyrkin delivered at the 7-th Workshop on Elementary Particle Theory Loops and Legs in Quantum Field Theory, April, 2004, http://www-zeuthen.desy.de/~lldesy/talks/chetyrkin.pdf.
- [43] S. Bekavac, Comput. Phys. Commun. 175 180 (2006).
- [44] M. Faisst, P. Maierhöfer and C. Sturm, Nucl. Phys. B766 246 (2007).
- [45] J. Fleischer and O. V. Tarasov, Z. Phys. C64 413 (1994).
- [46] P. A. Baikov and D. J. Broadhurst, "Three-loop QED vacuum polarization and the four-loop muon anomalous magnetic moment", hep-ph/9504398.
- [47] M. Faisst, K. G. Chetyrkin and J. H. Kühn, Nucl. Phys. Proc. Suppl. 135 307 (2004).
- [48] M. Faisst, PhD thesis, Cuvillier Verlag, Goettingen ISBN 3-86537-506-5.
- [49] K. G. Chetyrkin, M. Faisst, J. H. Kühn, P. Maierhöfer and C. Sturm, Phys. Rev. Lett. 97 102003 (2006).
- [50] R. Boughezal and M. Czakon, Nucl. Phys. B755 221 (2006).