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Recently the two-loop next-to-leading logarithmic (NLL) virtual corrections to arbi-
trary processes with massless external fermions have been calculated. Within the spon-
taneously broken electroweak theory the one- and two-loop mass singularities have been
derived to NLL accuracy and expressed as universal correction factors depending only
on the quantum numbers of the external particles. This talk summarizes the results for
massless fermionic processes and presents new aspects arising in the extension of the
corresponding loop calculations to massive external fermions. As a preliminary result,
the Abelian form factor for massive fermions is given.

1 Electroweak corrections at high energies

Past and present collider experiments have explored high-energy processes at energy scales
at the order of or below the masses MW and MZ of the weak gauge bosons. But the Large
Hadron Collider (LHC) and the proposed International Linear Collider (ILC) will reach
scattering energies in the TeV regime. For the first time, the characteristic energy Q of the
reactions will be very large compared to MW . At these high energies Q � MW , electroweak
radiative corrections are enhanced by large logarithms ln(Q2/M2

W ), which start to be sizable
at energies of a few hundred GeV and increase with energy. At LHC and ILC, logarithmic
electroweak effects can amount to tens of per cent at one loop and several per cent at
two loops. In view of the expected experimental precision especially at ILC, theoretical
predictions with an accuracy of about 1% are required, so the two-loop corrections are
crucial.

For sufficiently high Q, mass-suppressed terms of O(M 2
W /Q2) become negligible and the

electroweak corrections assume the form of a tower of logarithms with terms αl lnj(Q2/M2
W ),

0 ≤ j ≤ 2l, at l loops. The leading logarithms (LLs) with power j = 2l are known as Sudakov
logarithms [2]. The subleading logarithms with j = 2l − 1, 2l − 2, . . . are denoted as next-
to-leading logarithmic (NLL), next-to-next-to-leading logarithmic (N2LL) terms, and so on.
The experience with four-fermion processes [3, 4] shows that the subleading logarithmic
contributions may be of the same size as the leading ones. In addition, large cancellations
occur between the individual logarithmic terms, so the restriction to the LL approximation
is not sufficient, and the NLL corrections or even further subleading terms are required.

1.1 Origin of electroweak logarithms

Logarithms ln(Q2/M2
W ) arise from mass singularities, when a virtual gauge boson (photon γ,

Z or W± boson) couples to an on-shell external leg and to any other (internal or external)
line of the diagram. The region where the gauge boson momentum is collinear to the
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momentum of the external particle yields a single-logarithmic one-loop contribution. In the
special case that the gauge boson is exchanged between two different external legs, a double-
logarithmic contribution arises from the regions where the gauge boson momentum is soft
and collinear to one of the external momenta. In addition, ultraviolet (UV) singularities
lead to single-logarithmic contributions.

In the case of photons, the mass singularities are not regulated by a finite gauge boson
mass. In D = 4 − 2ε space–time dimensions, the singularities appear as poles 1/ε and 1/ε2

per loop. For a consistent treatment of leading and subleading logarithmic contributions,
each pole in ε has to be counted like a logarithm ln(Q2/M2

W ). Finite masses of the external
particles regularize the collinear singularities and lead to logarithms involving these masses.

It has been shown at one loop for arbitrary processes [5] and at two loops for massless
fermionic processes [6] that the electroweak LL and NLL corrections are universal: they
depend only on the quantum numbers of the external particles and can be written in terms
of universal correction factors which factorize from the Born matrix element.

1.2 Approaches for virtual two-loop electroweak corrections at high energies

Two-loop electroweak corrections at high energies have been studied in recent years with two
complementary approaches. On the one hand, evolution equations known from QCD have
been applied to the electroweak theory by splitting the latter into a symmetric SU(2)×U(1)
regime above the weak scale MW and a QED regime below the weak scale. Then the
evolution equations permit to resum the one-loop result to all orders in perturbation theory.
From this approach the LL [7] and NLL [8] corrections for arbitrary processes as well as the
N2LL approximation for massless four-fermion processes f f̄ → f ′f̄ ′ [9] are known, where
the NLL and N2LL terms are valid in the equal mass approximation MZ = MW .

On the other hand, various calculations have checked and extended the resummation pre-
dictions by explicit diagrammatic two-loop calculations. At first, the LLs for the fermionic
form factor [10] were obtained, then the LLs for arbitrary processes [11], the angular-
dependent NLLs for arbitrary processes [12] and the complete NLLs for the massless fer-
mionic form factor [13]. Finally, the N3LL approximation for the massless fermionic form
factor was calculated for MZ = MW and combined with the evolution equations, yielding
the N3LL corrections for massless neutral-current four-fermion processes in an expansion
MZ ≈ MW around the equal mass case [3, 4].

2 Two-loop next-to-leading logarithmic corrections

In order to complete the missing diagrammatic NLL calculations, the goal of this project is
to derive virtual two-loop electroweak corrections for arbitrary processes in NLL accuracy.
In contrast to the resummation approaches, we rely on the complete spontaneously broken
electroweak theory. We consider processes with external momenta pi, where all kinematical
invariants, rij = (pi + pj)

2, are of the order of the large scale Q2 � M2
W . We implement

the particle masses MW , MZ , mt and MHiggs, which are different, but of the same order. In
particular, we consider a massive top quark and neglect the masses of the other fermions.
We thus get combinations of large logarithms L = ln(Q2/M2

W ) and poles in ε from virtual
photons. At l loops, terms αlLnε−j+n are LLs if j = 2l, and NLLs if j = 2l−1 (n = 0, 1, . . .).
The NLL coefficients involve angular-dependent logarithms, ln

(

−rij/Q2), and logarithms of
mass ratios, ln(M2

Z/M2
W ) and ln(m2

t /M
2
W ).
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We have completed the calculation for processes with massless external fermions [6] and
are about to extend our results to massive fermionic processes.

2.1 Extraction of NLL mass singularities

In order to extract the mass singularities from the loop diagrams, we first isolate the so-
called factorizable contributions: These are diagrams where the gauge bosons couple only
to external legs, not to internal legs of the tree subdiagram, and where the gauge boson
momenta have been set to zero in the tree subdiagram. For these factorizable contributions
we use a soft–collinear approximation which eliminates the Dirac structure of the loop cor-
rections and factorizes the loop integrals from the Born matrix element. This approximation
is an extension of the eikonal approximation and reproduces the correct NLL result not only
for soft, but also for collinear gauge bosons.

The remaining non-factorizable contributions are obtained by subtracting from all dia-
grams yielding mass singularities the factorizable contributions. We have shown that the
non-factorizable contributions vanish due to the collinear Ward identities proven in [5].

Therefore only the factorizable contributions need to be evaluated explicitly. For the LL
and NLL terms at two loops, we need a double-logarithmic contribution from a soft and
collinear gauge boson which is exchanged between two different external legs, and another,
at least single-logarithmic, loop correction. The two-loop factorizable contributions in the
case of massless external fermions are depicted in Figure 1.

F F F F F

F F F F

Figure 1: Two-loop factorizable contributions for massless external fermions. “F” denotes
the factorized tree subdiagram, in which the gauge boson momenta are set to zero. The
grey blob in the gauge boson propagator stands for all possible self-energy insertions.

The factorizable diagrams also include NLL contributions from UV momentum regions.
When a subdiagram with a small characteristic scale of the order M 2

W yields UV singularities
which are renormalized at the scale Q2, large logarithms ln(Q2/M2

W ) arise. The soft–
collinear approximation mentioned above is not valid for UV momenta, so we cannot use it
for subdiagrams of this type and employ projection techniques instead.

2.2 Results for massless fermionic processes

We have evaluated the loop integrals of the factorizable contributions with two indepen-
dent methods: An automatized algorithm which is based on the sector decomposition tech-
nique [14], and the method of expansion by regions combined with Mellin–Barnes repre-
sentations (see [4] and references therein). The NLL result for massless fermionic processes
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f1f2 → f3 · · · fn has been published in [6]. It allows to write the combined one- and two-loop
result in the factorized form M = M0F

sewF ZF em, where M0 is the Born matrix element,

and the correction terms read F sew = exp
[

α
4π

F sew
1 +

(

α
4π

)2
Gsew

2

]

, F Z = 1 + α
4π

∆F Z
1 and

F em = exp
[

α
4π

∆F em
1 +

(

α
4π

)2
∆Gem

2

]

. The symmetric-electroweak factor F sew equals the re-
sult from a symmetric SU(2)×U(1) theory where all gauge boson masses are equal to MW .
The factor F Z incorporates the terms from the mass difference MZ 6= MW . And the elec-
tromagnetic terms in F em factorize and exponentiate separately, such that a separation of
the singularities due to the massless photon is possible. The one-loop terms F sew

1 and ∆F em
1

get exponentiated, and the additional two-loop terms Gsew
2 and ∆Gem

2 are proportional to
β-function coefficients. For details of the correction terms, we refer to [6].

Our results confirm the resummation predictions based on the evolution equations. By
applying our general correction factors to the case of massless four-fermion scattering, we
have found agreement with the neutral-current results in [3, 9], and we have obtained a new
NLL result for the charged-current processes.

3 From massless to massive fermions

For massive external fermions, the diagrams from the factorizable contributions have to be
reevaluated, additional diagrams with Yukawa interactions have to be considered and the
cancellation of the non-factorizable contributions must be verified. This section deals with
new complications which arise from massive external fermions in the loop integrals.

3.1 Expansion by regions with massive external particles

Expansion by regions [15, 16] is a powerful method for the asymptotic expansion of loop
integrals. It is based on the following recipe: Divide the integration domain of the loop
momenta into regions corresponding to the asymptotic limit considered. In every region,
expand the integrand appropriately. Integrate each of the expanded terms over the whole
integration domain.

The integrand is expanded before integration, and each expanded term has a unique
order in powers of the large scale Q and the small scale MW . But on-shell momenta pi of
massive external particles involve two scales, as their momentum squared is p2

i = m2
i ∼ M2

W

and their combinations with other external momenta are rij = (pi + pj)
2 ∼ Q2. In order

to separate these two scales, the external momenta are reparametrized in terms of light-like
momenta p̃i as pi = p̃i + (p2

i /r̃ij)p̃j , with some other external leg j 6= i and p̃2
i = p̃2

j = 0,
r̃ij = 2p̃ip̃j [16]. Through this shift, all contractions of external momenta with loop momenta
can now be divided into parts of distinct scales, and the expansion is done in inverse powers
of the new large scales r̃ij = rij + O(M2

W ).

With respect to any pair of external light-like momenta p̃i, p̃j , the loop momenta can
be expressed in Sudakov components parallel and perpendicular to these external momenta:

k = k
(i,j)
i p̃i/Q+k

(i,j)
j p̃j/Q+k

(i,j)
⊥

, with k
(i,j)
i = 2p̃jk Q/r̃ij , k

(i,j)
j = 2p̃ik Q/r̃ij and p̃ik

(i,j)
⊥

=

p̃jk
(i,j)
⊥

= 0. In each region, the components of the loop momenta are assigned specific sizes
in powers of Q and MW . Typical regions are listed in Table 1. While the hard, soft,
collinear and ultrasoft regions are already present for massless external particles, the two
ultracollinear regions are only relevant for massive external particles.
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Region hard soft i-collinear j-collinear ultrasoft i-ultracoll. j-ultracoll.

k
(i,j)
i Q MW Q M2

W /Q M2
W /Q M2

W /Q M4
W /Q3

k
(i,j)
j Q MW M2

W /Q Q M2
W /Q M4

W /Q3 M2
W /Q

k
(i,j)
⊥

Q MW MW MW M2
W /Q M3

W /Q2 M3
W /Q2

Table 1: Typical regions with the corresponding sizes of loop momentum components

3.2 Power singularities and fermion masses

Asymptotic expansions with small masses and large kinematical scales not only produce
logarithmic mass singularities, but also power singularities Q2/M2

W,Z and Q2/m2
t . These are

generated at two loops by subdiagrams with a small scale of the order M 2
W . The method of

expansion by regions predicts, for the contribution of each region, where power singularities
can appear, by means of a simple power counting in the expanded integrals.

When complete Feynman diagrams are considered, the terms in the numerator ensure
the cancellation of the power singularities. In diagrams where power singularities are present
for individual scalar integrals, care must be taken to keep all the mass factors in the numer-
ator which ensure the cancellations. In particular, the masses in the numerator of fermion
propagators and in the Dirac equation of the spinors may not be neglected. Therefore we
are not allowed to use the soft–collinear approximation for small-scale subdiagrams. How-
ever, these are exactly the same diagrams where we have employed alternative projection
techniques already in the massless case in order to get the UV contributions right.

Additional complications originate from fermion masses in the numerator due to the
chiral structure of the electroweak theory. With each mass factor along a fermion line, the
chirality of the fermion in its interactions with the weak gauge bosons changes. We have
found, though, that fermion masses in the numerator are relevant exclusively in pure QED
diagrams where the chirality changes do not matter.

3.3 Preliminary results

We have completed the calculation of all factorizable contributions involving two massive
or massless external fermion legs. This permits to determine the two-loop form factor in an
Abelian model with both a massive gauge boson (mass MW , coupling α) and a massless one
(coupling α′). The one-loop form factor as a function of the two external fermion masses is

given by F1(m1, m2) = α
4π

F M
1 + α′

4π

[

F 0
1 (0, 0)+∆F 0

1 (m1)+∆F 0
1 (m2)

]

. The NLL contribution
(up to the order ε2) from the massive gauge boson is independent of the fermion masses,

F M
1 = −L2 −

2

3
L3ε −

1

4
L4ε2 + 3L +

3

2
L2ε +

1

2
L3ε2, (1)

with L = ln(Q2/M2
W ), while the contribution from the massless gauge boson is split into a

completely massless part and corrections for each of the fermion masses:

F 0
1 (0, 0) = −2ε−2 − 3ε−1, ∆F 0

1 (0) = 0,

∆F 0
1 (mi) = ε−2 + Liε

−1 +
1

2
L2

i +
1

6
L3

i ε +
1

24
L4

i ε
2 +

1

2
ε−1 +

1

2
Li +

1

4
L2

i ε +
1

12
L3

i ε
2, (2)

with Li = ln(Q2/m2
i ). We have found that the NLL two-loop form factor (without closed

fermion loops) simply exponentiates the one-loop result, F2(m1, m2) = 1
2

[

F1(m1, m2)
]2

.
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4 Conclusions

We evaluate two-loop electroweak corrections in NLL accuracy for arbitrary processes with
massive and massless external fermions. The methods which we have successfully applied
for massless fermions work well also in the massive case, and the complications arising
from fermion masses are under control. Preliminary results are already available for the
form factor, they factorize and exponentiate like in the massless case. The calculation for
processes with external fermions will soon be completed, and our method can be extended
to arbitrary processes involving external gauge bosons or scalar particles.
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