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The potential of Two Higgs Doublet Model (2HDM) can have extrema with different
physical properties. We found explicit equations for extremum energies via parameters
of potential if it has explicitly CP conserving form. These equations allow to pick out
extremum with lower energy – vacuum state and to look for change of extrema (phase
transitions) with the variation of parameters of potential. Our goal is to find general
picture here to apply it for description of early Universe.

¥ Lagrangian. The spontaneous electroweak symmetry breaking via the Higgs mech-
anism is described by the Lagrangiana

L = LSM
gf + LH + LY with LH = T − V, ϕi =

(
ϕ+

i

ϕ0
i

)
.

(1)

Here LSM
gf describes the SU(2) × U(1) Standard Model interaction of gauge bosons and

fermions, LY describes the Yukawa interactions of fermions with Higgs scalars and LH is
the Higgs scalar Lagrangian; T is the Higgs kinetic term and V is the Higgs potential.

The most general renormalizable Higgs potential is the sum of the operator − V2 of
dimension 2 and the operator V4 of dimension 4. In the 2HDM

V = −V2(xi) + V4(xi) ; V2(xi) = Mixi ≡
[
m2

11x1+m2
22x2+

(
m2

12x3+h.c.
)]

/2 ,

V4(xi)=
Λijxixj

2
≡ λ1x

2
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2
2

2
+λ3x1x2+λ4x3x

†
3 +

[
λ5x

2
3

2
+λ6x1x3+λ7x2x3+h.c.

]
,

x1 = ϕ†1ϕ1, x2 = ϕ†2ϕ2, x3 = ϕ†1ϕ2 , x3∗ ≡ x†3 = ϕ†2ϕ1 (i, j = 1, 2, 3, 3∗).

(2)

Here Λij = Λji, λ1−4 and m2
ii are real while λ5−7 and m2

12 are generally complex.
¥ Extrema of potential. The extrema of the potential define the values 〈ϕ1,2〉 of

the fields ϕ1,2 via equations:
∂V/∂ϕi|ϕi=〈ϕi〉 = 0 , ∂V/∂ϕ†i |ϕi=〈ϕi〉 = 0 . (3)

These equations have the electroweak symmetry conserving (EWc) solution 〈ϕi〉 = 0 and
could have several electroweak symmetry breaking (EWSB) solutions. Below e.g. 〈F 〉N
means numerical value of the operator F in N -th extremum.

We consider also the values yi of operators xi at the extremum points
yi,N ≡ 〈xi〉N = 〈ϕa〉†N 〈ϕb〉N for xi = ϕ†aϕb .

In each extremum point these values obey inequalities following from definition and Cauchy
inequality, written for important auxiliary quantity Z:

y1 > 0 , y2 > 0 , Z = y1y2 − y∗3y3 ≥ 0 . (4)
• Classification of EWSB extrema. It is useful to define quantities

Ta ≡ 〈∂V/∂xa〉 = Λaiyi −Ma (a = 1, 2, 3, 3∗) , T1,2 are real, T3∗ = T ∗3 .
(5)

In these terms system (3) can be transformed to equations for yi:
〈ϕ1〉†〈∂V/∂ϕ†1〉 = y1T1 + y3T3 = 0 , 〈ϕ2〉†〈∂V/∂ϕ†1〉 = y∗3T1 + y2T3 = 0 ,

〈ϕ2〉†〈∂V/∂ϕ†2〉 = y2T2 + y∗3T3∗ = 0 , 〈ϕ1〉†〈∂V/∂ϕ†2〉 = y3T2 + y1T3∗ = 0 .
(6)
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a Notations and main definitions follow [1], we use some equations from [2].
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One can consider each pair of these equations as a system for calculation of quantities
Ti via yi. The determinant of these systems are precisely Z = y1y2 − y∗3y3. Therefore, it is
natural to distinguish two types of extrema, with Z 6= 0 (charged extrema with Ti = 0) and
with Z = 0 (neutral extrema with Ti 6= 0).

• For each EWSB extremum one can choose the z axis in the weak isospin space so that
the most general electroweak symmetry violating solution of (3) can be written in a form
with real v1 and complex v2:

〈ϕ1〉 =
1√
2

(
0
v1

)
, 〈ϕ2〉 =

1√
2

(
u
v2

)
with v1 = |v1|, v2 = |v2|eiξ . (7)

At u 6= 0 we have Z > 0 – charged extremum, at u = 0 we have Z = 0 – neutral extremum.
• The distances from some extremum and between two extrema are useful

conceptions for discussions below, they are defined as
D(ϕ, N) = (ϕ1〈ϕ2〉N − ϕ2〈ϕ1〉N )† (ϕ1〈ϕ2〉N − ϕ2〈ϕ1〉N 〉) ≡ x1y2 + x2y1 − x3y3∗ − x†3y3 ,

D(I, II) = (〈ϕ1〉I〈ϕ2〉II − 〈ϕ2〉I〈ϕ1〉II)
† (〈ϕ1〉I〈ϕ2〉II − 〈ϕ2〉I〈ϕ1〉II) .

(8)

• Decomposition around EWSB extremum. Our potential can be rewritten as a
sum of extremum energy and two polynomials in xi of first ans second order. The form of
second order polynomial is fixed by a quartic terms of potential, it can be only V4(xi − yi).
The residuary first order polynomial in xi must be proportional to D(ϕ,N). Therefore

V = Eext
N + V4(xi − yi,N ) +R · D(ϕ,N) . (9a)

Let us define R. The differentiation of (9a) gives for Ti:

T1 = y2R , T2 = y1R , T3 = −y∗3R , T3∗ = −y3R .

For the charged extremum Ti = 0, and we have from here Rch = 0.
For the neutral extremum the Higgs fields mass matrix ∂2V/∂ϕi,a∂ϕj,b|N for the upper

(±) components a, b can be written as

M++ =
(

T1 T3

T3∗ T2

)
≡

(
y2 −y∗3
−y3 y1

)
R .

At Z = 0 determinant of this matrix equals to 0. Therefore, one eigenstate of this matrix
equals to 0. This massless combination of charged Higgs fields form well known Goldstone
state. The second eigenstate of above matrix describes the physical charged Higgs boson
with mass M2

H± = Tr M++ = T1 + T2 = (y1 + y2)R. This quantity is positive for the
minimum of the potential, it can be negative in other extremes. Finally, we obtain

RN = M2
H±/(y1 + y2)

∣∣
N

for neutral extremum N , and Rch = 0 . (9b)
• The extremum energy in each extremum point can be expressed, using the theorem

on homogeneous functions:
Eext

N = V (yi,N ) = −V2(yi,N ) + V4(yi,N ) = −V4(yi,N ) = −V2(yi,N )/2 . (10)
The global minimum of potential realizes the vacuum state of the model. The direct com-
parison of extremum energies looks the best way for finding vacuum. More delicate but also
important problem is possible existence minima of potential different from vacuum (”false
vacuum” or ”metastable state”). It can happen if only all eigenvalues of mass matrix near
each extremum are positive.

¥ EW symmetry conserving (EWc) point. The EWc point 〈ϕ1〉 = 〈ϕ2〉 = 0
is extremum of potential. Depending on m2

ij it has different nature: it is minimum if
det|m2

ij | ≥ 0 and m2
11 < 0 , m2

22 < 0, it is maximum if det|m2
ij | ≥ 0 and m2

11 > 0 , m2
22 > 0,
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or it is saddle point in any other case. According to [3] no other extremum can be a maximum
of potential.

¥ Charged extremum. In the case when Z 6= 0, eqs. (6) have form Ti = 0.
This system of linear equations for yi can have unique solution which is calculated easily.
In accordance with (7), it describes an extremum of the original potential (2) if only the
obtained values y1,2 obey inequalities (4). These inequalities determine the range of possible
values of λi and m2

ij where the charged extremum can exist. According to (9), the charged
extremum is minimum of the potential if the quadratic form V4(xi − yi,ch) is positively
defined at each classical value of operators xi, i.e. V4(zi) must be positive at arbitrary real
z1, z2 and complex z3 (see also [3]). It is more strong condition for potential than positivity
constraint (V4(zi) must be positive in the corner of zi space, limited by conditions of form
(4)).

¥ Neutral extrema, general case. Other solutions of the extremum condition
(3) obey a condition for U(1) symmetry of electromagnetism, that is solution with Z = 0 ⇒
u = 0. In the calculation of extremum condition it is essential that in case quantities yi are
not independent.

For the Higgs potential of general form we have no idea about classification of neutral
extrema. However, if CP conserving extremum (with no scalar-pseudoscalar mixing) exists,
there is a basis in (ϕ1, ϕ2) space in which potential has explicitly CP conserving form
[4], [1] (with all real λi, m2

ij). Below we use this very form of potential.

¥ Neutral extrema, case of explicit CP conservation (real λi, m2
ij).

In accordance with definitions (7), we have for each solution y3 =
√

y1y2 eiξ. Now the
extremum energy (10) is transformed to the form

Eext = −1
2

{
m2

11y1+m2
22y2+2m2

12
√

y1y2cosξ
}
+

λ1

2
y2
1 +

λ2

2
y2
2 + (λ3 + λ4)y1y2+

+λ5y1y2cos2ξ + 2 (λ6y1 + λ7y2)
√

y1y2cosξ.

(11)

Now we find extrema in coordinates y1, y2, ξ. We start from the minimization in ξ at fixed
yi. It gives two types of solutions:

(A) : cos ξ =
m2

12 − 2(λ6y1 + λ7y2)
4λ5

√
y1y2

, (B) : sin ξ = 0 . (12)

• Spontaneously CP violating extremum. The extremum point (12A) describes
a solution with complex value v2 at real parameters of the potential. In this case physical
neutral Higgs states have no definite CP parity. So this extremum is called the sponta-
neously CP violating (sCPv) extremum [5, 6]. The substitution of cosξ from (12A)
into (11) transform extremum energy to the second order polynomial in y1, y2. Minimum
condition for this energy become system two linear equations for extremal values of y1, y2

with unique solution. Therefore, y1, y2 and cos ξ are described by parameters of the
potential unambiguously. Certainly, this extremum can be realized only in the range of
parameters of the potential obeying inequalities | cos ξ| < 1 , y1 > 0 , y2 > 0.

The energy (11) does not changes at the change ξ → − ξ (i. e. 〈ϕ2〉 → 〈ϕ2〉∗). Therefore
If ϕ1 = 〈ϕ1〉, ϕ2 = 〈ϕ2〉 is the extremum of potential, then ϕ1 = 〈ϕ1〉, ϕ2 = 〈ϕ2〉∗

is also the extremum and these two extrema are degenerate in energy [5], (13)

the sCPv extremum is doubly degenerated in the ”direction” of CP violation.
Note that the potential (11) is a second order polynomial in cos ξ. The sCPv extremum

(if it exist) can be a minimum only if λ5 > 0, in accordance with [7].
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• CP conserving extrema. The solution (12B) describes extrema that correspond to
ξ = 0, π. The case ξ = π can be obtained from the case ξ = 0 if we allow v2 (i.e. tan β) to be
negative. Therefore, without loss of generality we consider below the only case with ξ = 0.
In these cases physical Higgs bosons have definite CP parity (CP conserving – CPc –
extrema). The extremum condition , written for vi =

√
2yi, has form of the system of two

cubic equations. Rewriting this system with parametrization v1 = v cos β, v2 = v sinβ, we
express the quantity v2 via t ≡ tanβ and obtain the equation for t similar to those presented
in [9]. This equation can have up to 4 different solutions. Considering nearly degenerated
example, one can state that in some cases system can have 2 different CPc minima.

¥ Case of soft Z2 symmetry violation (λ6 = λ7 = 0) at real λ5,
m2

12. In the mentioned important case many equations become more transparent. We
present explicit equations for extremum energy for the charged, sCPv and CPc extrema
respectively

Eext
ch = −m4

11λ2 + m4
22λ1 − 2m2

11m
2
22λ3

8(λ1λ2 − λ2
3)

− m4
12

4(λ4 + λ5)
;

EsCPv = −m4
11λ2 + m4

22λ1 − 2m2
11m

2
22λ̃345

8(λ1λ2 − λ̃2
345)

− m4
12

8λ5
where λ̃345 = λ3 + λ4 − λ5 ;

ECPc = −
(
m2

11 + tm2
12

) (
m2

11 + 2tm2
12 + t2m2

22

)

8(λ1 + λ345t2)
, where λ345 = λ3 + λ4 + λ5 and

λ2m
2
12t

4 + (λ2m
2
11 − λ345m

2
22)t

3 + (λ345m
2
11 − λ1m

2
22)t− λ1m

2
12 = 0 .

(14)

The results for general case with λ6, λ7 6= 0 at real λi, m2
ij are presented in [8].

¥ Vacuum. Now the using of decomposition (9) or direct comparison of general
equations for extremum energy like (14) allow to obtain following conclusions.

1. If the EWc extremum (〈ϕ1〉 = 〈ϕ2〉 = 0) realizes the vacuum state (it can happen
only at m2

11, m2
22 < 0) all EWSB extrema are saddle points .

2. If the charged extremum realizes the minimum of the potential, all neutral extrema
are saddle points.

3. For two neutral minima of potential or a minimum and a saddle point with M2
H±,N

> 0,
the deeper (a candidate for the global minimum – the vacuum) is the extremum with the
larger value of ratio M2

H±,N
/v2

N .
For explicitly CP conserving potential one can distinguish a CP conserving (CPc)

extremum with zero phase difference between the values 〈ϕi〉 at the extremum point and
spontaneously CP violating (sCPv) extrema, in which the phase difference between the
values 〈ϕi〉 is nonzero, the latter generates neutral Higgs states without definite CP parity.
Total number of extrema in this case can be up to 8 (0 or 1 charged extremum, up to 4 CPc
extrema, 2 or 0 sCPv extrema, 1 EWc extremum).

4. At λ5 > 0 and λ5 > λ4 system can have a sCPv minimum, and this minimum is
vacuum. This vacuum is doubly degenerate in sign of phase difference between the values
of fields at the extremum point. This degeneracy is broken by loop corrections to potential
in correspondence with direction of arrow of time. In this case other EWSB extrema are
saddle points, not minima.

5. System can have more than one CPc local minima, e. g. I and II. In this case the
vacuum state is lowest among them. For the important case of softly broken Z2 symmetry
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(14) the state I is below state II and can describe vacuum if

m2
12/(v2

Isin2βI)−m2
12/(v2

IIsin2βIi) > 0 . (15)

¥ To illustrate our general discussion, we consider a simple toy potential with additional
ϕ1 ↔ ϕ2 symmetry, where all the extrema can be calculated easily:

Vt =
λ

2
(x1 + x2)

2 +
λκ
2

(
x2

3 +x∗23

)− m2

2
(x1 + x2)− m2κ r

4
(x3 + x∗3) . (16)

Below we present the map, representing change of vacuum states with the change of para-
meters of potential in the plane (κr, κ), where κr = 2m2

12/m2 – vertical axis and κ = λ5/λ
– horizontal axis. Left plot: m2 > 0, right plot: m2 < 0. Note that in this toy model
potential has no minima except vacuum.
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