Luminosity stabilization at TESLA photon collider

Valery Telnov INP, Novosibirsk

ECFA workshop, Montepellier, November 13-16, 2003

Beam collisions at linear colliders can be controled by the beam beam deflection.

Difference between e^+e^- and $\gamma\gamma$ cases:

- 1. In the e^+e^- case, at small vertical diplacement the beams attract and oscillate inside each other. In $\gamma\gamma$ case (e^-e^-) as well) the beams repel each other. As result the deflection angle is larger.
- 2. In $\gamma\gamma$ collisions σ_x is several times smaller than in e⁺e⁻ case (~ 5 times at TESLA). The kick is much larger then in e⁺e⁻ and almost independent on the initial displacement.

Dependence of the deflection angle on beam parameters

For small deflections, when the vertical beam displacement during the beam collision is less than σ_x

$$\vartheta_y \sim \frac{\sigma_z}{R}; \quad R \sim \frac{pc}{eB}; \quad B \sim \frac{2eN}{\sigma_x \sigma_z}$$
$$\Longrightarrow \vartheta_y \sim \frac{2r_e N}{\sigma_x \gamma},$$

this is valid for $\vartheta_y < \sigma_x/\sigma_z$.

For large deflections (the case for low energy photon colliders, including TESLA 2E = 500 GeV)

$$rac{Rartheta_y^2}{2}\sim 2\sigma_x \Longrightarrow artheta_y \sim \sqrt{rac{4\pi Nr_e}{\sigma_z \gamma}},$$

valid for $\vartheta_y > \sigma_x/\sigma_z$. The deflection does not depend on σ_x and σ_y .

At photon colliders about half of particles have $E \sim 0.1 - 0.2E_0$ and essentially influence $\overline{\vartheta_y}$.

The main difference from e^+e^- is the step-like behavior of the ϑ_y on the displacement Δ_y . This function depends on the conversion efficiency.

Prescription: the feedback system for $\gamma\gamma$ is similar to e⁺e⁻, but somewhat different algorithm (for the vertical direction). Varing the beam position one should find the jump and continuesly go up and down around this place by small displacements $\Delta_y \ll \sigma_y$. Zero points for the pickups can be found by sending only one beam to the IP.