

Frontend Interface Summarize

Aim

- Discuss electrical and mechanical issues of the very frontend: the interfaces between sensor/readout chip/backend transmission & HV supply/control.
- Define standards for prototypes, based on available technologies.

Results (1) - Readout/Fanout from sensor

- state of the art fine pitch pcb will do (100...200µm for current few channel FE chips)
- matters of crosstalk & capacitive load (under investigation)
- wire bonding or bump bonding to pads
 (needs ~ 3mm gap between absorber tiles;
 conductive glueing also discussed)
- wire bonding to FE chip

Template of a readout structure

flex pcb, 128 channels wire bonded to sensor pads (Zeuthen)

used for crosstalk tests

Template of an integrated readout board

pcb + flex readout, 2x32 channels wire bonded to sensor pads (Krakow)

will be ready in October

Results (2) - Transmission to DAQ

backend connection

(NO solution recommended since none of the available FE chips offers digital transmission)

repeater/multiplexer

(two possible locations:

- immediately upstream of the detector
- approx. 6m upstream inside the support tube)
- technology

(twisted pairs to repeater, optical further up; current: coaxial to multichannel ADC)

Results (3) - Mechanics

aligment

(initial alignment: 500µm overall)

precision

(knowledge about actual position: 100µm)

support

(FE chip has to be cooled, forces of cabling have to be compensated)