

BeamCal simulation with BeCas

Novgorodova Olga

30.06.2009

FCAL Collaboration meeting 30 June 2009

BeamCal

Motivation: For the very forward region of an ILC detector special calorimeters are needed. BeamCal will be hit by a large fraction of e⁻ -e⁺ pairs stemming from beamstrahlung. Sensors have to withstand a very high levels of total ionizing dose.

Purposes : ->Highly efficient detection single high energetic electrons (photons) at lowest angles.

Minimize the amount of backscattered particles into the Inner Detector, while shielding QD0 against pairs from beamstrahlung.

Provide a signal for the use of luminosity optimization and diagnostics.

BeamCal Design

Sandwich EM calorimeter

- 30 Xo W sampling calorimeter (30 layers)
- Layer thickness ~Xo (3.5 mm W)
- Sensor thickness ~0.3 mm (each sensor layer divided into 8 sectors)
- Weight ~160 kg (+ support)
- 10 cm Graphite in front
- θ range 5.8 43.5 mrad
- ~ 10⁴ 10⁵ channels of ~0.8 R_M

Rin (sensor) 20 mm Rout (sensor) 150 mm Rout (mech) 200 mm

First step

 Monte Carlo studies of background of beam calorimeter (BeamCal) with BeCas program for future optimization of granularity of the BeamCal

Geant 4 Simulation -BeCaS

- A Geant4 BeamCal simulation has been set up (A.Sapronov).
- BeCaS can be configured to run with:
 - different crossing angles now -> 14 mrad
 - magnetic field
 - detailed material composition of BeamCal including sensors with metallization, absorber, air gap
 - geometry description (30 layers, 17 rings, 36 sectors and dead area

Simulation chain

 Guinea Pig Simulate Collision: (nominal parameter set) input-> accelerator parameters output->pairs.dat (ASCII file) (E, GeV, velecities in x-, y-, z- directions /c)

> [pub4] ~/workspace/geant4/prsTOroot % more pairs.dat -0.0195231 0.178687 -0.151442 0.971829 87865.3 -74044.4 32593.8 0.0232386 -0.00117221 0.0197505 0.999562 -1844.88 2601.52 45837.1 0.0825597 -0.00109356 -0.00163778 0.999979 -1136.89 -178.303 13050.7 -0.0154896 -0.0592611 -0.278483 0.958043 -28207.5 -131725 11438.6 0.090212 0.0115869 0.00326938 0.999911 1494.45 59.7509 32669.4

2. **PrsTORoot** Transfer e+e- pairs from pairs.dat to root file

- **3. BeCas** Detector simulation (input-> root file with particle descriptions; output->root file format)
- 4. **ROOT** For analysing

Shower properties

<Edep> vs Layer <Edep> vs Rad EdepMeanLayer_5_r Entries 17 (Ve2) <200 400 <200 400 Mean 30.24 <Edep> (GeV) RMS 12.39 30 25 20 300 15 200 10 100 5 20 40 60 80 100 120 140 10 15 20 25 5 30 Rad (mm) N layer

<Edep> dependance of layer's number

-> Maximum of background is in 5-6 layers

<Edep> vs radius for 5-th layer

40 BX

a 250 GeV e- Earlier simulation

Simulation in 2002 Left for background Right for one single high energetic e-

FCAL Collaboration meeting 30 Junie2009

One pad example

One layer pads distributions

Distribution for mean values of deposited energy vs. radius (mm) and phi (deg) Distribution for RMS values of deposited energy vs. radius (mm) and phi (deg)

Conclusions

- Background investigation -> Continuous background simulation
- Single high energetic electron simulation
- Comparison of signals from beamstrahlung and single high energetic electron
- Optimization of BeamCal geometry

Thank You!
