BeamCal Simulations with Mokka

Madalina Stanescu-Bellu

West University Timisoara, Romania Desy, Zeuthen

30 Jun 2009 – FCAL Meeting

Forward region of the ILC

Forward region of the ILC

Beam calorimeter (BeamCal) - monitor the beam parameters at the interaction point; adjacent to the beampipe.

Luminosity detector (LumiCal) – covers larger polar angles; luminometer of the detector.

The gamma detector (GamCal) – together with BeamCal, measures beamstrahlung photons, which are very collinear to the beam.

Guinea Pig Beam-Beam interaction simulation

When linear e+ e- bunches collide

- Bunches are deformed by electromagnetic attraction → LUMINOSITY ENHANCEMENT
- Needed high luminosity (since each pair of bunches has only one chance to cross and interact) →
- These high EM Fields bend the particles (DISRUPTION) \rightarrow
- Transverse acceleration →
- Energy loss in the form of synchrotron radiation: BEAMSTRAHLUNG →
- BACKGROUNDS:
 - Electromagnetic (Pairs) : $e+e- \rightarrow gamma-gamma \rightarrow e+e- ...$
 - Hadronic : $e+e- \rightarrow gamma-gamma \rightarrow hadrons$

Guinea Pig Beam-Beam interaction simulation

GP simulates collision of two bunches (e-e+ or e-e-) for a given set of input parameters in ACC.DAT:

<u>Energy =250.0 GeV</u> <u>Particles=2 (per BX)</u> <u>Charge_sign=-1</u> (this is the relative sign of charges \rightarrow e+e-) <u>Beam sizes, Angles</u>

<u>Store beam=1</u> → produce <u>beam1.dat</u> + <u>beam2.dat</u> with the particles of the first and second beam respectively, after the beam-beam collision.

<u> $Do_photons=1$ Store_photons=1</u> \rightarrow produce photon.dat with the Beamstrahlung photons after interaction

<u>Do_compt=0</u> → no Compton Background <u>Do_hadrons=0</u> → no Hadronic Background

<u>Do_pairs=1 Track_secondaries=1 Store_secondaries=1</u> → produce secondaries.dat with the e+eincoherent pairs generated by Beamstrahlung photons

SECONDARIES.DAT (in Ascii):

Energy in GeV/c (positive for e-, negative for e+); x,y,z Velocity (v/c); x,y,z position (nm), process labels (Breit-Wheeler, Bethe-Heitler, Landau-Lifshitz)

Mokka

- → Full C++ simulation using Geant4 and a realistic description of a detector for the future linear collider.
- → Geometry data driven, able to simulate several detector models from its geometry database (via MySQL C++ wrapper).
- → Using Geant4, builds the detector geometry and simulate events in this geometry.
- → Data driven at run time via steering files, interactive command dialogues, macro files.
- \rightarrow Can read Pythia event files.
- \rightarrow Event output files can be written on disk in ASCII or <u>LCIO</u> file formats.

Mokka general software schema

Mokka-input files

MACRO.MAC /generator/generator secondaries.dat /run/beamOn 10 → Number of events (1BX)

MOKKA_BCAL.STEER /Mokka/init/detectorModel ILD_00 \rightarrow detector model /Mokka/init/dbHost pollin1.in2p3.fr \rightarrow host machine \rightarrow MySql username and password /Mokka/init/EditGeometry/rmSubDetector all \rightarrow removes all detectors /Mokka/init/EditGeometry/addSubDetector SLcal02 600 \rightarrow adds LumiCal /Mokka/init/EditGeometry/addSubDetector BeamCal01 800 \rightarrow adds BeamCal \rightarrow global geometry parameters that may change at runtime /Mokka/init/initialMacroFile ./macro.mac \rightarrow macro file to be executed after startup /Mokka/init/IcioFilename mokka.slcio \rightarrow LCIO output file

Mokka-output files

I. LOG FILE:

- 1) Reading and executing steering lines
- 2) Connecting to the database "models03"
- 3) Asking for the model ILD_00: found.
- 4) Connecting to detectors, subdetectors, drivers, subdrivers
- 5) Running 10 events of BeamCal and LumiCal

Event 7, scanning sub-detectors LumiCalCollection from the LumiCal sensitive detector has 0 hits. BeamCalCollection from the BeamCal sensitive detector has 31 hits.

II. MOKKA.SLCIO with events data \rightarrow Analyzed by Marlin

Marlin

Modular Analysis and Reconstruction for the LINear collider

Simple modular application framework for analysis and reconstruction code based on LCIO.

Marlin

I. XML steering file:

- order of processors to be executed:
 - <!--processor name="MyTestProc"/>

• global parameters:

LCIO input files (mokka.slcio)

processor parameters:

- Collections analyzed (BeamCalCollection, MCParticle)

II. Predefined and User Defined Processors:

The heart of the reconstruction package are the Marlin processors which hold the different modules of algorithms to *get runs, events, racks and clusters from the simulated data.*

My Test Processor: gets events and tracks from BeamCal and MonteCarlo Collections

Marlin

Event number: 1 has 0 pads hits - BeamCal Event number: 2 has 0 pads hits - BeamCal Event number: 3 has 0 pads hits - BeamCal Event number: 4 has 3 pads hits and 1 MC particles - BeamCal x: 128.884 y:-81.1788 z: 3744.88 E[GeV]: 0.000129556 cell ID0 : 30445582 cell ID1 : 0 x:-25.8615 y: 111.691 z: 3745.96 E[GeV]: 0.000303077 cell ID0 : 30492685 cell ID1 : 0 x: 37.6266 y: 130.386 z: 3745.51 E[GeV]: 0.000337587 cell ID0 : 30483470 cell ID1 : 0 Total Energy Deposition [GeV]: 0.000770219 E[GeV]: 1.38255 PDG ID : 11 Total Monte Carlo Energy Deposition [GeV]: 1.38255 Event number: 5 has 0 pads hits - BeamCal Event number: 6 has 0 pads hits - BeamCal Event number: 7 has 31 pads hits and 20 MC particles - BeamCal Event number: 8 has 0 pads hits - BeamCal Event number: 9 has 0 pads hits – BeamCal Event number: 10 has 7 pads hits and 4 MC particles - BeamCal MyTestProc processed 10 events in 1 runs

Future steps

- Higher statistics & Graphics (ROOT).
- Study of background distribution & fluctuations in calorimeter cells, for 1 BX, integrate for several BXs.
- Algorithm for high energy electron signal reconstruction.
- Electron detection efficiency under several background conditions, for different regions of the calorimeter.
- Optimization of the calorimeter segmentation.

THANK YOU VERY MUCH FOR LISTENING !!