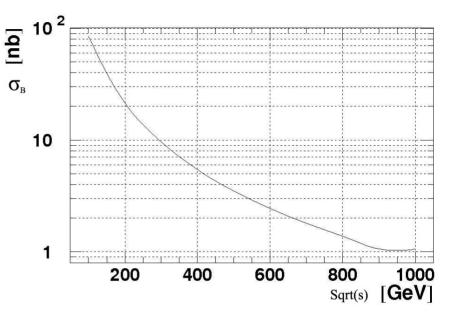


Background for luminosity measurement -revised-

T. Jovin, M. Pandurovic, I.Smiljanic, I.B.J.

Several issues to be taken into account (we did it through scaling factors):


- → Different cross-sections (in particular for signal) at 500 GeV and 1 TeV
- → 4-f (2-gamma) processes described differently with different generator (WHIZARD vs. BDK) !
- → We do not (always) simulate all processes (i.e. hadronic background)
- → Topological and asymmetric cuts do not have the same background rejection
- → Simulation studies are influenced by statistics (CPU time)

Cross-sections (500 GeV \Rightarrow 1 TeV)

- → Bhabha cross-section drops app. 4 times at 1 TeV (4.7 nb ⇒ 1.2 nb)
- → Background rises into saturation
 (BDK 4.5 nb ⇒ 5.5 nb, only muons,
 19.4 nb ⇒ 24.2 nb total background)

→ Can we trust WHIZARD?

(0.5 nb \Rightarrow 0.2 nb, only muons, 2.4 nb \Rightarrow 0.9 nb total background)

BDK- WHIZARD AT LEAST FACTOR 10 AT ILC ENERGIES OVER 150 AT 3 TeV (0.16 nb WHIZARD, ~25nb BDK)

Cross-sections (500 GeV \Rightarrow 3 TeV)

10"

FURTHER COMPLICATIONS AT 3 TeV

- → Background with BDK ~ 25 nb (scale WHIZARD at 500 GeV with factor 10¹)
- → Bhabha ~ 0.04 nb (scale B/S at 500 GeV factor 10²)
- → (Asymmetric cuts inferior then topological for a factor 10¹)

WHAT TO EXPECT AT CLIK ?

(scaling game)

W>1 Ger P.>0.5 G.V 107 105 103 27 Icen#J<9# 104 σ(fb) δ e'e'Z -0.41<0.65 ww cautico B ZZ ιo^z - WW-7 _____ E.>0.1E_1c+s91<0.8 10 vūz `eeZZ e±v¥'7 277 עדונ 0.1 500 1000

Cross sections

 \sqrt{s} (GeV)

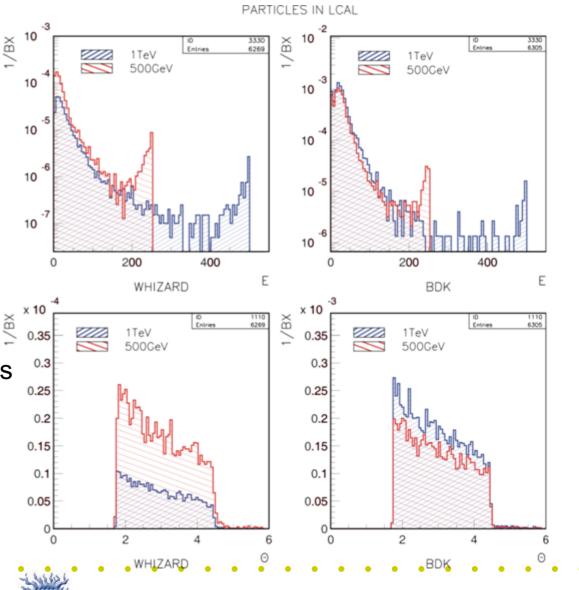
SCALE WHIZARD RESULT (B/S ~ 10^{-4}) AT 500 GeV FOR A FACTOR $10^3 \Rightarrow 10\%$ EFFECT

H(P & XOVP VIH(X

•

What to expect at ILC?

	LUMICAL GEOMETRY	SAMPLES
	BARBIE 5.0	WHIZARD 40 kEvt eell
	Rmin, Rmax 8 cm, 19.52 cm	BDK 40 kEvt eell
	z=2510 mm	BHABHA 5 pb ⁻¹
	31.8-77.5 mrad	
	30 planes, 48x64pads	CUTS
→	for occupancy	Asymmetric cuts*
	we used BARBIE 4.3	cut 1: 35.8-70.7 mrad;
	Rmin, Rmax 8 cm, 19 cm	cut 2: 31.8-77.7 mrad.
	z=2270 mm	Erel=(E _F +E _B)/2E _{beam}
	35-83.5 mrad	* reduces BHSE to a 10 ⁻² level –
	30 planes, 48x64pads	topological cuts gives factor 10 at 500 GeV
	HEP & XOVP VIH(X	I. Božović-Jelisavčić, Zeuthen June 29-30 2009


BACKGROUND

in the LumiCal, before selection

- WHIZARD BDK
- → Shapes OK
- Order of magnitude difference in N_{LCAL}
- Different cross-section behaviour at 500 GeV and 1 TeV
- Somewhat less spectators at 1 TeV with both generators

1**#(**Ă

 $H(P \in X \cap V P)$

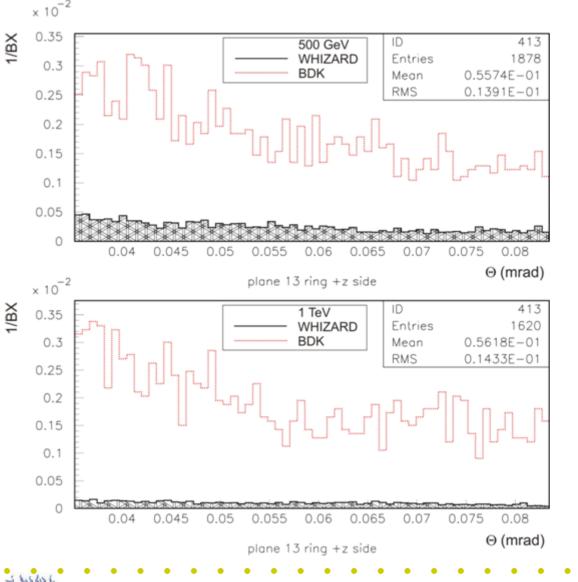
What to expect at ILC?

B/S		WHIZARD	BDK
500 GeV	after cuts	1.8.10-4	1.0 [.] 10 ⁻³
	before cuts	1.4·10 ⁻³	1.2·10 ⁻²
1 TeV	after cuts	4.1.10-4	4.2·10 ⁻³
	before cuts	1.5·10 ⁻³	2.6·10 ⁻²

- Effect of background of order of per mill
 (only I should be scaled factor 2 for total background)
- → Visible impact of BDK cross-section
- May be a bit optimistic should be careful with background statistics

What to expect at ILC?

OCCUPANCY WHIZARD - BDK


- Consistent with previous results
- → WHIZARD-BDK difference expected from cross-sections

 $\mathbf{X} \bigcirc \mathbf{Y} \triangleright$

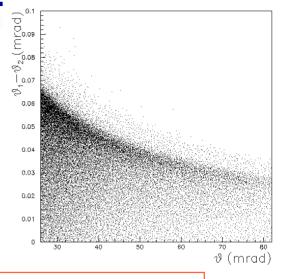
#(Å

→ Nothing significant happens at 1 TeV

 $H \in P$

- → Asymmetric selection reduces background for a factor 10
- Asymmetric cuts should be optimized for a given geometry with respect to BHSE
- → Size of the background effect is of order of 10⁻³ at all ILC energies
- → This should be verified with MEvt background samples could be a few factors up due to statistics
- → 3 TeV case (with ILC geometry) seems pessimistic background is (at least) 10% effect (+ what do you do with BHSE?)
- \Rightarrow Occupancy doesn't significantly change with energy (but , depends on the cross-section), should be no more than $3\cdot10^{-3}$ hits per BX

BACKUP



More systematics .

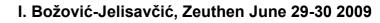
Beam-beam interactions

•

- Modification of initial state: Beamstrahlung $\rightarrow \sqrt{s'} \le \sqrt{s}$, $\Delta \theta_{ini} \ne 0$, $E_{elec} \ne E_{posit}$
- Modification of final state: Electromagnetic deflection → Bhabha angle reduction (~10⁻²mrad) + small energy losses

Total BHabha Suppression Effect (BHSE) ~1.5%

Luminosity spectrum reconstruction


To control the \triangle BHSE from beamstrahlung at the level of 10⁻², variations in the rec. lumi spectrum $\triangle x/x$ need to be known with the precision of 4.10⁻³

Beam parameters control

Bunch length σ_z and horizontal size σ_x should be controlled at the 20% level to keep the Δ BHSE from EM deflection at the level of 10⁻³

QUITE A TASK IN REALISTIC BEAM CONDITIONS...

