

Linear Collider Workshop

1-4 April

Amsterdam

Design and expected performance of a forward calorimeter

Vladimir Drugakov NC PHEP Minsk / DESY Zeuthen

distance between IP and LCAL 220 cm angular coverage 5.5 - 27.5 mrad

Main goals:

• fast beam diagnostic

 detection and measurement of high energetic electrons and photons at very small angles

Proposed technologies: •crystal PbWO₄ detector •sampling tungsten / diamond detector

beamstrahlung

High charge density of beams leads to strong electromagnetic fields \Rightarrow beams focus

Pinch effect result in:

- luminosity enhancement (~2 times)
- beam energy loss (~4% for TESLA 500-800)
 due to beamstrahlung photon emission

Beamstrahlung is TESLA's major background source: ~ $6 \times 10^{+10}$ beamstrahlung photons / BX •none detector hits from direct beamstrahlung •creation of e⁺e⁻ pairs from beamstrahlung photons gives ~ $1.28 \times 10^{+5}$ e[±] / BX

LCAL background

Simulation tools :

- GuineaPig for beamstrahlung production
- BRAHMS for tracking

For $\sqrt{s} = 500 \text{ GeV}$ TESLA design beam parameter

 \sim 15 000 e $^\pm$ / BX with total energy \sim 20 TeV hit LCAL

Extremely radiation hard calorimeter is needed

Deposited energy as function of R and ϕ

benchmark segmentation

	C/W	PbWO ₄
Radiation length of LCAL media, cm	0.4	0.89
Molier radius of LCAL media, cm	1.0	2.2
Total calorimeter length, cm	12	18
Number of longitudinal layers	30	3
Number/thickness of ring, cm	12/0.5	7 / 1.0
Number of azimuthally sectors	20-64	8-32
Number of channels	15120	528

R - z projection

simulation chain

- generation of 500 BG and 500 particle
- every 10 BX calculation of BG average value and RMS over 10 BX in each cell
- [E BG+ E particle E average BG] in each cell
 apply recognition algorithm
- - comparison of 'signal' with BG RMS

gaps & fibers

Additional elements inside detector:

 \cdot wrapping material between cells to keep light inside cell thickness - 300 μm

 \bullet light guides to signal readout diameter – 600 μm

These elements are much less dense, that provide additional energy leakage.

play

Play with geometry and recognition algorithm parameters in order to find best calorimeter performances:

- Registration efficiency
- Fake rate
- Energy resolution

Fake rate: none particles background only

 \Rightarrow 4 slices is OK

Total colorimeter length 20X₀ (3slices) / 30X₀ (4slices)

expected performance of crystal calorimeter

New way to keep light inside cell is needed: painting?

comparison of technologies

Warning sampling calorimeter has 2 times smaller ring width

Conclusions & outlook

Extremely radiation hard calorimeter is needed

crystal calorimeter shows reasonable
 performances even for 3 longitudinal layers

 due to thin longitudinal segmentation sampling calorimeter shows much better registration efficiency

 strong energy leakage through light guides and gaps between cells occurred

⇒ Energy resolution of sampling calorimeter is even better!

 \Rightarrow new way to keep light inside cell is needed

Simulation with realistic beams is needed

Time to start simulation based on GEANT4