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Abstract
A brief introduction to the work principles for resonant cavities as Beam Position Mon-
itor (BPM) including some description of signal processig
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1 Resonant Cavity and Beam Coupling
A charged particle traveling within a beam pipe induces a mirror charge in the pipe
itself. For a perfect conducting pipe, this charge is traveling together with the beam
without loss of energy.

A resonant cavity represents a discontinuity along the beam pipe where stationary
waves are induced by the passage of a charged particle. In this case, some energy is
stored which oscillates between pure electric and magnetic energy. The total stored
energy, Ws, is given as Ws =< We > + < Wm >= 2 < We >, where < We >
and < Wm > are the mean electric and magnetic energy respectively, averaged over
one period. Thus, a cavity can be schematically represented by an LC circuit with a
frequency ω = 1/

√
(LC) [1]. In other words, a particle passing a discontinuity induces

an infinite number of stationary waves n, each of them can be represented by an LC
circuit with its own frequency ωn.

Considering the electric and magnet fields within a cylindrical cavity, we are inter-
ested on the fields with pure transverse magnetic oscillations, i.e. on magnetic fields
with no longitudinal component (Hz = 0). Such fields are denoted as TM modes. They
are defined by the geometry of the cavity (length and radius) and by three integer num-
bers m, n and p. It is common to identify a mode with the notation TMmnp and its
frequency is given by

ωmnp =
1

√
µ0ε0

√(
jmn

R

)2

+
(

pπ

l

)2

, (1)

where R is the radius of the cavity, l its length and jmn the n-th zero of the m-th Bessel
function. For particles near the center of the cavity, the TM010 or monopole mode has
the strongest excitation. The explicit expressions for the fields of this mode are [2]

Ez,010 = C010J0

(
j01r

R

)
eiω010t (2)

Hr,010 = 0 (3)

Hφ,010 = −iC010
ω010ε0R

j01

J ′0

(
j01r

R

)
eiω010t . (4)

The electric field Ez,010 has a weak symmetric dependence on the distance r from the
center. On the other hand, the mode TM110 or dipole mode is antisymmetric and its
amplitude has a strong dependence on the r. The explicit expressions for the dipole
fields are [2]

Ez,110 = C110J1

(
j11r

R

)
cos φeiω010t (5)

Hr,110 = −iC110
ω110ε0R

2

j2
11r

J1

(
j11r

R

)
sin φeiω010t (6)

Hφ,110 = −iC110
ω110ε0R

j11

J ′1

(
j11r

R

)
cos φeiω010t . (7)

A schematic representation of both modes TM010 and TM110 is shown in Fig. 1.
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Figure 1: Left: Transverse view of the fields of the TM010 mode. Right: Transverse view
of the fields of the TM110 mode. Here, the electric field has a strong dependence on the
beam offset from the center of the BPM.

As mentioned above, a charged particle traveling through a cavity interacts with the
modes and releases some energy. To understand the coupling between the particle and
the modes we use the so-called fundamental theorem of the beam loading: the voltage
induced by a charge traveling through a cavity is twice the effective voltage "seen" by
the charge itself [3, 4]. Hence, the energy stored in the cavity by the dipole mode can
be calculated as the volume integral of the modulus square of the electric field

W110 =
1

2
ε0

∫
V
|Ez,110|2dV =

π

4
ε0C

2
110J

2
0 (j11)R

2l . (8)

On the other hand, according to the fundamental theorem of the beam loading, the
variation of the energy stored in the cavity ∆W110 can be written as

∆W110 = q · V =
q

2

∫ +∞

−∞
Ez,110~vdt =

=
q

2

∫ l/2

−l/2
C110J1

(
j11δx

R

)
eik110zdz =

=
q

2
C110J1

(
j11δx

R

)
Tr110l (9)

for a charge q traveling parallel to the cavity axis with an offset δx, φ = 0 and velocity
~v close to the light speed. Here, the integral is calculated along the path of the particle,
q its charge, k110 is the wave-number and Tr110 the transit time factor

Tr110 =

(∫ l/2
−l/2 Ez · eikzdz

)
(∫ l/2
−l/2 Ezdz

) =
sin k110l/2

k110l/2
. (10)

It is important to note that the phase of the particle with respect to the field induced
by the particle itself is chosen such that the field maximally opposes the motion of the
particle [4].

Considering the cavity initially empty, Eq. (9) is equal to the energy stored (8) and
approximating the Bessel function J1(x), for small arguments, by x/2, the amplitude
C110 can be written as
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Figure 2: Schematic representation of the induced dipole mode in a cylindrical cavity.
A beam with small offset (dashed line) induces a smaller signal than a beam with bigger
offset (continuous line). Beams with the same offset but opposite in X induce the same
signal but with opposite phases (continuous and dotted lines).

C110 =
2qTr110J1

(
j11δx

R

)
πε0J2

0 (j11)R2
≈

≈ qTr110j11δx

πε0J2
0 (j11)R3

(11)

and, in a similar way, C010 of the monopole mode

C010 ≈
qTr010

πε0J2
1 (j01)R2

. (12)

Both modes depend linearly on the particle charge q. However, only the dipole mode
has a linear dependence on the beam offset. It can be easily shown that two beams with
the same δx opposite in X (∆φ = π) induce the same voltage with opposite phase. A
schematic representation of this behavior is given in Fig. 2.

In general, the motion of a particle is not exactly parallel to the Z-axis of the cavity
but has an inclination or slope x′. In the linear regime of small offsets, any trajectory
can be represented as a sum of a trajectory with only an offset and a trajectory with only
an inclination (see Fig. 3), and for the voltage seen by a particle with pure inclination
and no offset we have

∆W110,x′ =
q

2

∫ l/2

−l/2
C110J1

(
j11z tan x′

R

)
eik110zdz

≈ i
q

2
C110

j11x
′

k2
110R

(
sin

k110l

2
− k110l

2
cos

k110l

2

)
. (13)
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= +x x’

Figure 3: A generic trajectory through a cavity interpreted as a superposition of a
trajectory with pure offset and a trajectory with pure inclination.

Thus, the signal is proportional to x′. Comparing this results with Eq. (8), the amplitude

C110 ≈ i
2qj11x

′

πε0J2
0 (j11)k2

110R
3l

(
sin

k110l

2
− k110l

2
cos

k110l

2

)
(14)

reveals that a phase of 90◦ exists between the field induced by a particle with only an
offset and the field induced by a particle with only an inclination. In the next section it
will be shown how the two signals can be disentangled.

So far, only cavities with perfect conducting walls were considered. In practice,
however, some dissipation of energy in the wall will happen so that the cavity behaves
like a RLC circuit with a decay constant τ . For this reason, as a Fourier analysis shows,
a broad spectrum of frequencies for each mode occurs. In particular, the monopole mode
substantially overlaps the dipole mode as indicated in Fig. 4(right).

To extract the relevant dipole signal from the cavity, a mode selection is necessary.
The mode selection is based on the fact that the boundary conditions for the dipole
and monopole modes are different on the wall of the cavity. In fact, the dipole mode
generates a field transverse to the Z-axis which might have a strong coupling to an
opportune modeled waveguide. Thus, it is expected that inside the waveguide the
dipole mode is dominant [2, 5] and its amplitude is proportional to the beam offset
(see Fig. 4(left)).

Finally, a generic dipole mode can be interpreted as a superposition of two orthogonal
polarizations of the mode itself. Hence, one cavity can provide X- as well as Y-position
readings at the same time (see Fig. 5).

Figure 6 (left) shows a photograph of a cylindrical cavity BPM. It is BPM 7 installed
in the mid-chicane of the experiment. The cavity, as can be seen, is connected with
four waveguides, two in vertical direction to extract the X-position signal and two in
horizontal direction for the Y-position signal.

Similar conclusions can be drawn for rectangular cavities. An example of such a
cavity, BPM 9 is shown in Fig. 6 (right). The main difference to the cylindrical cavity is
that X- and Y-position reading is performed by two distinct cavities, the two rectangular
cavities in the picture.
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Figure 4: Left: Amplitude vs. frequency of the first two monopole modes and the first
dipole mode of a cylindrical cavity with non-zero resistivity. The monopoles TM010 and
TM020 surround and overlap the dipole mode TM110 [5]. Right: The dipole mode is
selectively coupled out by means of a narrow radial slot on one face of the cavity [2].

Figure 5: A generic dipole mode can be represented as a superposition of two orthogonal
polarizations of the mode.

2 Signal Processing
It is common to express the output voltage of the dipole mode as a function of the shunt
impedance and quality factor. The shunt impedance is defined as

R110 =
V110

P110, loss

, (15)

where P110,loss is the power dissipated in the cavity walls. The internal quality factor is
defined as

Qint
110 =

w110W110

P110, loss

. (16)

Thus the energy stored in the cavity can be written as

W110 =
ω110

4

(
R

Q

)
110

q2 , (17)
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Figure 6: Left: Cylindrical cavity BPM as designed by UCL. Right: BPM 9 in End
Station A. The two rectangular cavities for X- and Y-position reading and the cylindrical
reference cavity are clearly seen.

where
(

R
Q

)
110

is the normalized shunt impedance. This quantity is independent on the
material of the cavity and depends only on its geometry. Moreover, it has a finite value
also when the cavity has a wall with zero resistivity (which corresponds to an infinite
value of the internal quality factor).

According to Eqs. (8) and (11), we have
(

R
Q

)
110

∝ (δx)2. Defining the external
quality factor as

Qext
110 =

w110W110

P110, out

, (18)

the dipole output power is then given by

P110, out =
ω110

4Qext
110

(
R

Q

)
110

q2 . (19)

Finally, the readout electronics with impedance Z provides an output voltage of

Vout =
√

ZP110, out =
qω110

2

√√√√ Z

Qext
110

(
R

Q

)
110

. (20)

As can be seen, this voltage has a linear dependence on the charge and the offset of
the particle, denoted as x in the following. In order to measure a signal which is only
proportional to the offset, normalization to the charge is needed. For this reason the
monopole signal is simultaneously extracted from a reference cavity, which is tuned such
that its monopole mode has the same frequency as the dipole mode of the beam position
cavity, i.e. ωref

010 = ωBPM
110 . Moreover, the reference cavity provides the arrival time of the

beam, allowing to determine the phase of the signal.
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The voltage signal at the front-end of the analogue electronics has thus the form

V (t) = e−Γt[Axx sin ωt + Ax′x′ cos ωt]

= ae−Γt sin (ωt + φ) , (21)

where a =
√

(Axx)2 + (Ax′x′)2 and φ = arctan (Ax′x′/Axx), with amplitudes Ax and
Ax′ ∝ q. In a similar way the reference cavity provides

V (t) = arefe
−Γt sin (ωt + φref ) , (22)

where aref ∝ q.
After filtering and digitization, both signals are multiplied by a complex local oscilla-

tor (LO) of the same frequency as the signal. This process, called digital down-conversion
(DDC), results in a signal which describes the envelope of the initial waveform

VDDC(t) = ae−Γt sin (ωt + φ) · eiωt

=
a

2
e−Γt

[
−ei(φ+π

2
) + ei(2ωt+φ+π

2
)
]

. (23)

The mixing process also generates an unwanted wave with a frequency 2ω, which has
to be eliminated by an additional filter. Customarily, the quantities I and Q denote the
real, respectively, imaginary part of the normalized down-converted signal

I =
a

aref

cos(φ− φref ) (24)

Q =
a

aref

sin(φ− φref ) . (25)

An example of an I-Q plot is shown in Fig. 7 for a beam particle with a generic offset
and tilt generated at the point P. If the tilt (or slope) is kept constant while the position
is changed, P moves along the continuous line, which has, in general, a non-zero slope
Θ (IQ-phase). When the beam crosses the center of the BPM, P changes sign (point
P’). If on the other hand, the beam position is kept unaltered while the beam tilt is
changed, the point P moves along the dashed line, perpendicular to the continuous line
(point P”).

To extract position and tilt of the particle, the IQ-phase Θ and the scale factors
S and S’ have to be determined by an appropriate calibration procedure. Finally, the
position and tilt are obtained after rotation of the plane by angle Θ and multiplication
with the scale factors:

x = S ·Re

[
a

aref

ei(φ−φref−Θ)

]
(26)

x′ = S ′ · Im

[
a

aref

ei(φ−φref−Θ)

]
. (27)

In the experiment T474/T491, calibration was performed by generating a well-known
beam offset using the corrector magnets or the Helmholtz coils of the A-line (see [6]).
For BPMs 4 and 7, also the mover systems have been utilized for calibration purposes.
In ESA, only the offset and not the tilt could be calibrated.
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Figure 7: I-Q plot with an IQ-phase Θ. Changing the position of the beam, the point
P moves along the continuous line and changes sign when it crosses the cavity center.
Changing the tilt, P moves along the dashed line, perpendicular to the continuous line.
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