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e LHC started beam operation on November 20

e November 23: collisions in all 4 experiemnts at /s = 900 GeV, magnets
oft

— first events by all experiments

—only partial detector on to protect sensitive components

e November 29: World record for beam acceleration, both beams at

1180 GeV
e December 1: beam with solenoids on in ALICE, ATLAS, CMS

e December 6,7: Collisions at 900 GeV with four bunches, solenoids on;
~ 20000 minimum bias events per experiment

e December 9: Very short fill with collisions at /s = 2.36 TeV
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ATLAS minimum bias event
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Collision Event
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http://atlas.web.cern.ch/Atlas/public/EVTDISPLAY/events.html

Physics at the LHC Lecture 9-3 Klaus Monig



ATLAS jet event

N EXPERINENI
2009-11-23, 19:42 CET
Run 140541, Event 416712
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CMS minimum bias event
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ATLAS minimum bias event with B field on
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CATLAS
1A EXPERIMENT
2009-12-06, 10:03 CET
Run 141749, Event 405315

Collision Event

http:/latlas.web.cern.chIAtIs/puinc/EVTDISPLAYIevents.htmI
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ATLAS jet event at /s = 2.36 TeV

2-Jet Event at 2.36 TeV
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2009-12-08, 21:40 CET
Run 142065, Event 116969
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Track-impact parameter distribution
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dE/dx in Silicon tracker v invariant mass (CMS)

24_| T | T 17T | T 1T | T 1T | T 1T | T 17T T 17T T ”u L
w) N P . S 16+
Jé 225—CMS 2009 preliminary _E g : ﬁ mass =( 119.14+/- 3.4)MeV
g 201 — — g 14— sigma =( 10.4 +/- 2.9)MeV
S __ verflow ] ﬂ 1 = 04/~ 5.
E 185 g??f::if 59.26!52 . 512— J e e B
o 16 MPV 288140025 |3 = [ ,
o) C Sigma 0.1637 £ 0.0168 | r B
g 14 MPat3Meviem 1 19 B
S - 1 #
c 120 ER e | [
10 1 slibl
8E - 6 j[
6 R —I =
4 3 F |L
2F H}ﬂg 3 2r s
0:||-|||||_|||-||-||_|||_||||| I I | e P ':)’-,HI|II Lol Vi salania il
c 1 2 3 4 5 6 7 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
dE/dx (MeV/cm) m(yy) [GeV/c?]

Physics at the LHC Lecture 9-9 Klaus Monig



Introduction

Supersymmetry is a symmetry coupling fermions and bosons

Particle content:

Gfavitino

Quarks . Leptons . Force particles Squarks  Sleptons - Susy
Force particles

Graviton
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Particle content:

e All known particles

e SUSY needs two Higgs doublets to give masses to up- and down-type
particle
= 5 Higgs particles

e Fach fermion has a scalar partner (where left- and right-handed
fermions have to be counted separately)

e Fach boson has a fermionic partner:

— Two charginos X1i2 (mXi < mXi), partner of Wi, H i, mixed
) 1 2

— Four neutralinos X(1)727374 (mX(l) < L < mX2>’ partner of v, Z, h, H.
mixed

~

— gluinos (g), gravitino (G)
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However mpgiticle 7 MPartner = SUSY is broken
Need mgpygy < 1'TeV to solve hierarchy-problem

In general > 100 new free parameters = have to make some assumptions
how they are correlated

SUSY-breaking parameters in the minimal model (MSSM):

e U(1),SU(2),SU(3) Gaugino-masses M 2 3
e Higgsino mass-parameter p
e Scalar-masses m; (or universal my)

e Sfermion-Higgs couplings A;, B,
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R-parity: R = (—1)QS+L+3B

(R =1 for SM particles, R = —1 for superpartners)
R-parity conservation

e Protects proton decay

e SUSY-particles only in pairs

e Lightest SUSY particle (LSP) is stable

[J Excellent dark matter candidate (which means LSP must be neutral
and weakly interacting)

R-parity can also be broken

e Very rich phenomenology

e However special care has to be taken to avoid proton decay
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Why SUSY in a nutshell

e Hicrarchy problem:

— SM particles give huge loop-contribution to Higgs mass (O(10" GeV)
[] unnatural
— SUSY partners exactly cancel the contributions from SM particles (if
SUSY exact)
e SUSY gives a good dark matter candidate

e SUSY can be a new source of CP-violation
[ may explain the matter/anti-matter asymmetry in the universe

e String theories are the only known way to connect gravity with quantum
mechanics
[1 all string theories are supersymmetric

e SUSY enables unification of forces at a high scale
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Running of coupling constants with and without SUSY

S - 3 3
= 60 N tfog; RN R

1 i
: MSSM
0L NC

1/0.

60

I
R
/

50
40 40D _—
30 30 F e e
20 20 b P

10 ol ~— -

-

Physics at the LHC Lecture 9-15 Klaus Monig



SUSY breaking schemes

Gravity mediated SUSY breaking

e SUSY is broken at a high scale by gravitational interaction to a hidden
sector

e Gauge coupling unification at the GUT scale (mayt ~ 1010 GeV)
possible

[J Common gaugino mass m; /2 at mauT

My _ My _ My
= T T T o at the weak scale

e Often also universal scalar mass mq assumed

e Slepton masses:
M2 = mg 4 0.77TM3 + 0.5m7 cos 23
M? = mi+0.77TM; — 0.27m3 cos 23
M? = mg+0.22M7 — 0.27mj cos 23

e Squark masses similar with ]\432 term

e L-R sfermion mixing oc m ¢(A s — prtan 3) only relevant for 3rd gener-
ation

Physics at the LHC Lecture 9-16 Klaus Monig



e Chargino mass matrix

o M, V2mw cos 3
MX N (ﬂmw sin 3 G )

detailed properties of XE—LQ (gaugino-,Higgsino-like) depend on values of
parameters

e Neutralinos similar

“Typical” mass spectrum

(mo — 100 Ge\/, m1/2 = 200 Ge\/)
m._o ~~ 100 Ge\/

X1
~ 160 GeV
’rfLX2i7X(3)74 ~ 350 Ge\/

mlg ~ 150 GeV
mq ~ 500 Ge\/

m._+ 0
X1 X9
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e Of course all moves with m, m; /2

®my can be moved arbitrarily by changing A
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mSUGRA

The minimal model which is mostly studied is given by:

e Gravity mediated SUSY breaking

e Minimal Higgs sector (2 doublets)

e Unification of masses at the GUT scale
e [ree parameters

—my: universal scalar mass at GUT scale

— My jo: universal termion mass at GU'T scale
—tan [3: ratio of Higgs vacuum expectation value
— Ap: universal trilinear coupling at GUT scale

—sign(p): the absolute value of p is given by electroweak symmetry
breaking
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Gauge mediated SUSY breaking

e SUSY is broken at intermediate scales (10° — 10° GeV) by gauge inter-
actions involving messengers between the visible and the hidden sector

e Main free parameters:

Miess  messenger mass scale
Niess  number of messenger generations

A universal soft braking scale
tan 3

sign ()
e Main differences to SUGRA
—very light gravitino ~ eV
— NLSP either X(l) with X(i) — G or £ with ¢ — G¢ (if mixing is large
in 2nd case, 71 is NLSP)
in both cases NLSP lifetime can be significant

— sfermion masses o «;, 1 =QED,QCD
= larger mass splitting between sleptons and squarks
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Gaugino and Sfermion Mass Parameters |
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SUSY limits

e Searches for SUSY at all past accelerators

e Most stringent model independent limits from LEP
mgz = 100 GeV for s #£LSP
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For the LSP a limit is possible assuming minimal SUGRA
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Where do we expect SUSY

e Hierarchy problem suggests that SUSY is below 1TeV

® (g — 2), can be best explained by SUSY just above the LEP limit
(however not all corrections fully understood)

e Cosmology also prefers light SUSY with some bands extending to high
MAasses
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SUSY at the LHC

e Most studies are within mSUGRA with R-parity conservation

e R-parity conservation results in stable, invisible LSP [] missing Ep

e Squarks and gluinos
are strongly interacting
[1 Large cross sections
even at high masses
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e Squarks and gluinos decay in long chains
[1 also access to charginos, neutralinos, sleptons

e Cascades produce also leptons [ easier background rejection
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SUSY discovery modes

e 2 missing LSPs per event don’t allow to reconstruct mass-peaks

e However they result in large missing

e Leptons can help to reduce background

e Typical preselection: > 4 jets, Ej@gs > 100 GeV
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Even cleaner: 2 leptons

e Most events start with gg L charge symmetric
[1 There is no charge correlation of leptons from different g

[] The probability for same-charge and opposite-charge lepton pairs is
equal

e On the contrary SM events with two leptons like
W W~ production produce opposite-charge pairs

. Z-production,

D ver Clean Sam 16 '_E T T I T T T I T T T I T T I.I |.I | | I T T 1 1 LI I_
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How to understand the background

QCD multijet background is difficult to predict
[1 better to estimate with data

Example: Z+jets events:

Control sample

lepton
lepton
replace

jets

e Select Z+jet events with Z — ¢T0~
e Calculate Ejninss removing leptons

e Use MC to verify procedure (and get small corrections)
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Procedure works well
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However BR(Z — vv)/BR(Z — (f) =~ 6 = statistical errors increase
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LHC reach for discovering SUSY

e The 1TeV region can be excluded
already after a very short time

e In most of the region several sig-
natures are visible

e With 300 fb—! masses of ~ 3TeV | x |
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How to measure SUSY properties?

e T'wo missing LSPs with unknown mass
[l no mass peaks can be reconstructed

e Simplest case 3-body decays, e.g.: XS — 7 *X(i) — MX(%:
m(£0) < m(x3) — m(x))

e More complicated case sequential 2-body decays: XS — 00— Mx(fz

0\ ()
- (0 [ m _ (M
(£0) < (X2>\ 1 <m(><8)> \ 1 < - )

e Mainly sensitive to mass differences

e Absolute masses can be measured with over-constrained system
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e After SUSY selection background is already small
e However also background from wrong pairing in SUSY events
e Good pairing are leptons of same flavour

e SM background (WW+X) and wrong SUSY pairing are symmetric in
lepton flavour

[] can subtract background from data
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Good precision on mass-edge possible!
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Masses can be determined by a global fit
Precision on masses: 20-50%

However precision on mass differences: 1-5%

LHC (+ILC) precision on m(x(l)) and m(q)

560
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[f mSUGRA is assumed, mq and my /o can be determined with 5-10%
precision

However also here a strong correlation remains

' I ! 1 L I 1
103 } Supersymmetry Mass -
" Determination i
102 = -
mosr LHConly -
> - .
(T
Y 100 - i
o B ,,
=
99 |- .
98 |- -
9 1 | i | 1 ] 1
548 249 250 251 252

M1/2 (GeV/c?)

For reasonable precision on tan 3, A need measurements of heavy Higgses
and t masses.
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Can the LHC prove that it discovered SUSY?

e Suppose LHC has discovered new particles that seem to be partners of
SM particles

e However e.g. in extra dimension models there can be partners of same
spin
e Spin measurement is one necessity to prove SUSY

e [deally would also like to measure couplings
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4 (near) ar)

f(near) can be positive or negative
For XS with spin 1/2 there is a charge asymmetry in the £g mass, for spin
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Dilution factors:

e /(near) and /(far) cannot be distinguished [J add them

e antl-q gives opposite asymmetry as q

L1 pp collider produces more ¢ than anti-ag
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Some asymmetry remains = excludes scalar

However be caretul: ¢ spin is assumed
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Complication at large tan 3 Ts

If tan 3 large:

e Significant mixing in 7 sector (oc m (A — ptan 8)) =
— 7 lighter than ¢
— left handed component in 7 favoured in Wino decay
e Larger Higgsino component in lighter neutralino, chargino =

— Stronger coupling to heavier stermions
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Some comments on models

e mSUGRA with universal masses gives very few parameters
[1 easy for simulation studies

e However in nature (if SUSY should be found)

—don’t know if gravity mediation is true at all

—don’t know if masses are universal (for sfermion masses relatively
straight forward to measure, for gauginos complicated

— don’t know if Higgs sector is minimal (more complicated Higgs sector
would actually solve some theoretical problems)

e Discovery of “new physics with invisible particles” is relatively robust

e Prove that this is SUSY will be difficult, although some evidence will
be obtained

e Reconstruction of the underlying model will be even more difficult

e A discussion is only possible when the data are there
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Gauge mediated SUSY breaking

Main phenomenological difference: Gravitino is very light (eV) [

e The NLSP can be charged (typically 7 or degenerate sleptons) or neu-

tral (typically X?)

e The NLSP lifetime can be from short (prompt decays at the main
vertex) to long (stable inside the detector)

M =250 TeV, N = 3,
sign(u) =1,C_,, =1

tan[3

40
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30/
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150
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Typical signatures:

e Neutralino NLSP

— Prompt decay: di-photon signature
— Intermediate lifetime: non pointing photons
— Long lifetime: like mSUGRA (mass pattern!)

e Stau NLSP

— Prompt decay: di-lepton final state (lower missing E)
— Long lifetime: stable heavy leptons

Decay chains in GMSB

jet ;I'ypli\lcal tdel(_:ay ;T_astg Typical decay chain
) or Neutralino for Stau NLSP
g.q v o
0 g.q
X2 .
[ X N a
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Prompt photon scenario

ATLAS event:JiveXML 5410 00386 run:5410 ev:386 geometry: <default> Atlantis Jet

o
=

Start with f‘standard” SUSY
cuts on B3, Niespr(jets)

Photons

o -
= ~ GMSB1 3
) =
: fr o N
° ¥ 7 After additional cut on N~ > 2 clean
€ i signal with no background
2 10 ?
3 4
NV
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Accessible region can be discovered with low luminosity
|

ATLAS
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Quasi stable lepton scenario

e NLSP lifetime can be so large that it decays outside of the detector

e [f charged slepton is NLSP there are two signatures:

—the lower velocity 3 can be measured with the drift chambers

—the high specific ionisation can be measured with detectors that have

pulse-height readout
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This would allow absolute mass measurements!
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Conclusions on Supersymmetry

e The most probable part of the supersymmetric parameter space will be
visible at the LHC already with low luminosity

e Inside a given model parameter fits are no problem

e However it will be difficult to prove that it is really SUSY and to fix
the model unless striking signatures are present
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