Physics at the LHC Lecture 3: Jet Physics at the LHC

Klaus Mönig, Sven Moch

(klaus.moenig@desy.de, sven-olaf.moch@desy.de)

Wintersemester 2009/2010

Must try to understand transition partons \rightarrow hadrons

Must try to reconstruct partons from hadrons

Experimental observation:

- Hadrons come in bundles (jets)
- Jets remember parton momentum

Model of fragmentation

- Quarks and gluons radiate gluons
- \bullet Gluons split into $q\bar{q}$ pairs
- "final state" partons rearrange into hadrons

MC description of gluon emission/splitting (parton shower)

Fragmentation models

String fragmentation (Pythia, Lund model)

- Quarks span a string between them
- When the quarks move apart string tension increases
- \bullet When the tension reaches a critical value string breaks creating a new $q\bar{q}$ pair at the new ends
- When the energy is small enough hadrons are formed

Cluster fragmentation (HERWIG)

- Remaining gluons split into $q\bar{q}$ pairs
- $q\bar{q}$ pairs rearrange into colour singlet clusters
- Clusters decay isotropically

Jet algorithms

Try to "undo" fragmentation

Warning: Hadrons are colour singlets, quarks and gluons are colour triplets/octets \Rightarrow quark/gluon "reconstruction" can never be exact

General jet algorithm:

- Define distance measure d_{ij} for pair of particles
- Define combination algorithm

Jet algorithm

- Calculate d_{ij} for all pairs and find $d_{ij,min}$
- If $d_{ij,min} > d_{cut}$ STOP
- Combine particles corresponding to $d_{ij,min}$
- Restart

Distance measure:

- Most obvious choice: invariant mass (JADE algorithm) In practice massless approximation $d_{ij} = \frac{E_i E_j}{s} (1 - \cos \theta)$
 - was successfully used for QCD studies
 - algorithm tends to cluster all low energy particles first in not so good for parton reconstruction
- To solve this problem replace mass by relative transverse momentum $(k_T, \text{Durham algorithm})$

 $d_{ij} = \frac{\min(E_i^2 E_j^2)}{s} (1 - \cos\theta)$

- equally well behaved for QCD studies

- prefers to combine low angles → closer to physics of parton showers

Combination procedure

- Most obvious: add 4-momenta $p_n = p_i + p_j$
- Quarks and gluons are massless, two alternatives in use:
 - add 3-momenta and calculate energy assuming m = 0
 - $-\operatorname{add}$ 4-momenta and rescale 3-momentum so that m=0

Infrared and collinear safety:

- QCD Feynman graph diverges for $p_g \rightarrow 0$ \implies algorithm must be stable when particle with $p \approx 0$ is added
- QCD Feynman graph diverges for splitting with $\theta \to 0 \implies$ algorithm must be stable when particle is split into two with $\theta \approx 0$

ok for JADE and k_T

Jet rates in e⁺e⁻

10

 10^{-4}

DURHAM

10⁻²

5–Jet

 10^{-3}

MC

 y_{cut}^{10} -1

Jets in pp

Differences to e^+e^-

- Protons disappear as colour non-singlets in the beampipe
- Final state is boosted and algorithms not Lorenz invariant
- The underlying event adds activity in the detector
- At high luminosity there are additional minimum bias events that cannot be separated

Must adapt k_T algorithm

New algorithms in pp $(p\bar{p})$: cone algorithms

Adaptation of k_T algorithm

- Replace $1 \cos \theta_{ij}$ by $\Delta R_{ij} = \sqrt{(y_i y_j)^2 + (\phi_i \phi_j)^2}$
- Distance $d_{ij} = \min(p_{t,i}^2, p_{t,j}^2) \frac{\Delta R_{ij}}{D^2}$ (*D* adjustable parameter)
- Add to pairs also single particles $d_i = p_{t,i}^2$
- If minimum is a particle: Define as jet and remove from list
- If minimum is a pair combine and start again
- Stop if nothing left

Features of the k_T algorithm

- Every hadron is uniquely assigned to a jet
- Every hadron is assigned to a jet
 - few hadrons that belong to a given parton are missing
 - significant noise from underlying event and minimum bias
- Jets have complicated shapes

Cone algorithms

- Naively imagine a jet as a energy flow within a cone in (y, ϕ) space
- \bullet Consequently 1st pp̄ jet algorithms add energy within a cone
- Iterative procedure
 - $-\operatorname{Start}$ with a cone containing some energy and opening angle R

Stability problems

- Solution is not unique
- Usually seeds are used in experiment → infrared unsafe (partially solved by artificial seed between two real ones (midpoint algorithm))
- Large fragmentation corrections in cases where two jets are merged into one
- Jets may overlap and splitting procedure is deeded

- A new cone algorithm exists that is equivalent to a seedless one solving the theoretical problems (SISCone)
- Anyway it turns out that the theoretical uncertainties are only on the 10% level

Features of cone algorithms

- Low energy hadrons are not all included in jets
 - energy missing for event reconstruction
 - -lot of underlying event/pileup rejected
- Jet shapes are usually round \implies makes underlying event, pileup, noise corrections easier

New idea: anti k_T algorithm

Define new distance measure: $d_{ij} = \min(p_{t,i}^{-2}, p_{t,j}^{-2}) \frac{\Delta R_{ij}}{D^2}$

- First cluster high energy with high energy and high energy with low energy particles
- \bullet This keeps jets round, with well defines area
- Algorithm still infrared and collinear safe!

Typical shapes for IR and collinear safe algorithms

Experimental issues

- \bullet Some part of the jet is outside the cone $) \bullet$ needs corrections
- Energy from the underlying event or pileup gets into the cone
- Treatment of noise in the calorimeter cells affects reconstructed jets

Dependence of jets on calorimeter treatment

Results of different jet algorithms for one CDF event

QCD predictions for jet-rates

- Composition of jet events at the Tevatron pp --> jet +X $\sqrt{s} = 1800 \text{ GeV}$ CTEQ6M $\mu = E_{T}/2$ 0< $|\eta| < .5$ CTEQ6M CTEQ5M qq Subprocess fraction 0.5 qg qg gg 0 **5**0 100 150 200 250 300 350 400 450 500 E_⊤ (GeV)
- Jet-events originate from gg, qg, qq scattering
- They can be calculated in QCD integrating over the PDFs
- At medium energies qg dominates, at high energies qq is dominant

Uncertainties due to PDFs are of the order 20-30%

Jet cross sections at the LHC

The underlying event

- At the LHC the parton-parton cross section integrated over the PDFs exceeds the proton-proton cross section
- This is interpreted as several parton-parton scatterings during one inelastic pp event
- There are indications that the hard partons concentrate in the core of the event
- For this reason the underlying event does not simply look like minimum bias

Analysis of the underlying event:

- 2-jet events are back-to-back
- Select events with one hard jet
- The opposite region should contain the 2nd jet

- Generators without multiparton interactions cannot describe the data
- However generators with UE can be tuned to agree with the data
- Warning: it cannot be expected that the Tevatron tunes describe the LHC data

50

100

150

200

PT(jet#1) (GeV/c)

250

300

350

400

0.0

0

450

Top as example for jets at the LHC

Top pair production:

• q \bar{q} and gg, gg largely dominates at LHC Top cross section ~ 800 pb

 $\Rightarrow 80\,000\,000$ events in 100 fb⁻¹

Top decays: $t \to bW$ (99.8%) with

 $W \rightarrow q\bar{q} \qquad 2/3rd \\ W \rightarrow \ell\nu, \ \ell = e, \mu \ 2/9th \\ W \rightarrow \tau\nu \qquad 1/9th$

(Rest is $t \to s, dW$)

- Always have jets in top events
- \implies Always have b-quarks

This means for $t\bar{t}$ events:

- 45% 2 b-jets + 4 light jets
 - $-\operatorname{everything}$ can be reconstructed
 - however large pairing ambiguities
 - -large QCD backgrounds
- \bullet 30% 2 b-jets, 2 light jets, 1 ℓ , 1ν
 - the neutrino can be reconstructed with a 2-fold ambiguity using the W-mass
 - pairing ambiguities are less
 - $-\operatorname{lepton}$ strongly suppresses QCD background
- $\bullet~5\%~2$ b-jets, 2ℓ , 2ν
 - clean samples
 - $-\operatorname{however}$ few constraints for reconstruction
- Rest contains $\tau s \implies$ difficult

Top Pair Decay Channels

Intermezzo: b-tagging at colliders

- b-quarks decay semileptonically with $BR(b \rightarrow \ell X) = 2 \times 10\%$
 - $-\operatorname{can}$ be used for b-tagging
 - $-\operatorname{however}$ low efficiency from the beginning
 - leptons inside jets where fake rate is high
- \bullet b-quarks have significant lifetime ($c\tau \sim 0.5 {\rm mm})$
 - $-\,\mathrm{e.g.}$ flight distance of 50 GeV B-meson: \sim 5mm
 - impact parameter w.r.t. primary vertex: $\sim 500 \mu {\rm m}$
 - $-\,\mathrm{resolution}$ of modern vertex detectors: $\sim 10 \mu\mathrm{m}$
 - \implies can use vertexing for b-tagging

Impact parameter methods

- Signed track impact parameter gives already good sensitivity for b-tagging
- Calculate probability for optimal use

$$\mathcal{P}_i = \int_{d_i/\sigma_{d,i}}^{\infty} \mathcal{R}(x) dx$$

• Tracks in a jet/event can be combined

$$\mathcal{P}_0 = \prod_i^N \mathcal{P}_i \quad \mathcal{P} = \sum_0^{N-1} \frac{(-\ln \mathcal{P}_0)^j}{j!}$$

- In principle this method gives an optimal separation of b- and light jets
- However very sensitive understanding of tracking

Enhancement/alternative: secondary vertices

- Secondary vertices are not faked so easily by reconstruction problems
- The vertex mass gives a good separation especially to c-quarks
- The energy of the fitted particles normalised to the jet energy makes use of the hard b-fragmentation (average B energy is ~ 80% of jet energy)

With the available methods e.g. a light quark rejection of 10^3 and a cquark rejection of 10 can be achieved for 50% b-efficiency (tt events)

Selection of $t\overline{t}$ events

Concentrate on mixed decays:

- $E_{T,miss} > 20 \,\text{GeV} \text{ (neutrino!)}$
- 1 isolated lepton with $P_T > 20 \,\text{GeV}$
- 2 b-jets with $p_T > 40 \text{ GeV}$ and $\geq 2 \text{ light jets with } p_T > 40 \text{ GeV}$

(At the beginning of data taking b-tagging can be dropped at the price of a larger background)

Hadronic W reconstruction

- Accept light jet pair if consistent with $m_{\rm W}$ at 3σ
- Rescale jets to $m_{\rm W}$ using a χ^2 technique
- Cut again on jet-jet mass around $m_{\rm W}$

W-b association

 \bullet Take the combination with minimal ΔR

Top mass distribution for the top-mass analysis

450 ATLAS preliminary Wrong b fb^{-1} 400 single top • Selected top-sample 350 dilepton has fully hadronic W +jets very little non-t \overline{t} back-300 ground 250 • For mass determination 200 most serious background is 150 combinatorial background 100 will way the 50 50 100 200 250 300 350 400 150 n M_{iib} [GeV]

Measurements of the top-quark mass

Why is the top mass interesting? SM:

• Electroweak precision data are affected by loop corrections

- Can be used e.g. to constrain $m_{\rm H}$
- Top-quarks corrections are quadratic \implies need to be known to get useful results

For this need $m_{\rm t}$ measurement of $\mathcal{O}(1\,{\rm GeV})$

Beyond SM

- Some models like SUSY predict the Higgs mass from the model parameters
- Here the $m_{\rm t}$ corrections can be of order $\Delta m_{\rm H}/\Delta m_{\rm t} \sim 1$
- \Longrightarrow In principle a much better top mass is needed

Current uncertainty from the Tevatron: $\Delta m_{\rm t} = 1.2 \,\text{GeV}$ This does not yet include

- errors from colour reconnection effects
- uncertainties from the mass definition

which might add up again to $1\,{\rm GeV}$

Expectation at the LHC: $\Delta m_{\rm t} \lesssim 1 \,{\rm GeV}$

- totally dominated by systematics
- largest experimental uncertainty: energy scale of b-jets
- errors from QCD might be of similar size

Search for rare top decays

The SM predicts FCNC top decays $(t \rightarrow Zq, \gamma q, gq)$ on the $10^{-14} - 10^{-12}$ level

In some new physics scenarios 10^{-4} can be reached Example for a $t \to Zq, \ Z \to \ell\ell$ selection:

Description of	$\begin{array}{c} \text{Signal} \\ t \to Zq \end{array}$	Background Processes		
		Z+jets	Z + W	$t\bar{t}$
Cuts	ε (%)	Nevt	Nevt	Nevt
Preselection	80.2	3.7×10^{5}	2941	11.7×10^{5}
3 leptons, 2 jets				
3 leptons, $p_T^{\ell} > 20 \text{ GeV}/c$	43.3	945	1778	1858
$p_T > 30 \text{ GeV}$	32.7	80	1252	1600
2 jets, $P_T^{jet} > 50 \text{ GeV}/c$	19.8	31	225	596
$m_Z \pm 6 \text{ GeV}$	16.8	24	180	29
one b-tag	8.2	10	28	10
$m_t \pm 24 \text{ GeV}$	6.1	0	2	5

Even the LHC can only scratch the interesting region!

Measurement of single top production

Feynman graphs

t-channel

 $\sigma = 260\,\mathrm{pb}$

 $\sigma = 60 \, \mathrm{pb}$

All channels are sensitive to V_{tb} t-channel analysis

- Special cuts for event topology
- Main background is $t\bar{t}$ and some W+jets
- Sample analysis gave $\varepsilon = 1.4\%$ and S/B=0.8
- \bullet Statistical error no problem, however systematics can be in 20% region

s-channel

Conclusions of 3rd lecture

- Quarks and gluons always end up in jets
- Most interesting physics at the LHC involves final state quarks (and gluons) → jets
- There is always an arbitrariness in the definition of jets
- Top quark production is an example of jet production at the LHC