Physics at LHC *lecture six*

Sven-Olaf Moch

Sven-Olaf.Moch@desy.de

DESY, Zeuthen

in collaboration with Klaus Mönig

- Humboldt-Universität, January 08, 2010, Berlin -

Plan

- Large extra dimensions
 - hierachy problem
 - theory
 - phenomenolgy
- Literature
 - Phenomenology, astrophysics and cosmology of theories with submillimeter dimensions and TeV scale quantum gravity Arkani-Hamed, Dimopoulos, Dvali [hep-ph/9807344]
 - A Large mass hierarchy from a small extra dimension Randall, Sundrum [hep-ph/9905221]
- Review
 - TASI 2004 Lectures on the phenomenolgy of Extra Dimensions Kribs [hep-ph/0605325]
 - Dark Matter and Collider Phenomenology of Universal Extra Dimensions Hooper, Profumo [hep-ph/0701197]

Motivation

History

- Unification of gravity with electromagnetism in 5-dim. space-time Kaluza 1919
- Compactification of fifth dimension (circle of small radius) Klein 1926
 - particles moving through extra dimension appear very massive
 - excited states of ordinary particles known as Kaluza-Klein modes
- String theory cannot be formulated in four dimensional space-time
 - bosonic string in D = 26
 - fermionic string ($\mathcal{N} = 1$ supersymmetry) in D = 10
- Hierarchy problem
 - Radiative corrections to Higgs mass with quadratic divergences induce large hierachies $O(M_{\rm Planck}^2/M_{\rm electro-weak}^2) \sim 10^{-32}$

Hierarchy problem

 Higgs mass receives radiative corrections from fermion loops

• the size of corrections is proportional to the UV cutoff Λ squared

$$\delta M_H^2 = \frac{\lambda_f^2}{4\pi^2} \left(\Lambda^2 + m_f^2\right) + \dots$$

- Cancellation of quadratic divergences to Higgs mass δM_H^2 under renormalization requires fine tuning
 - if UV cutoff $\Lambda \sim \mathcal{O}(M_{\text{Planck}})$ then a precision $\mathcal{O}(M_{\text{Planck}}^2/M_{\text{electro-weak}}^2) \sim 10^{-32}$ is required
- Standard Model as effective theory should have ratio of scales $\sim \mathcal{O}(1)$
 - high degree of fine tuning considered to be unnatural

Large extra dimensions

• M_{Planck} in 4 dimensions is not a fundamental scale

Higgs mass and triviality

- Higgs mass cannot be too light or the Higgs potential will not have a Mexican hat shape and will turn negative at large values
 - for Standard model to be valid up to Planck scale $M_H > 135$ GeV
- Triviality
 - If Higgs mass is too large the Higgs self-coupling drives mass to infinity above certain scale
- Standard model holds all the way up to Planck scale if
 135 GeV < M_H < 175 GeV

Gravity

Gravity in a nut-shell

Einstein-Hilbert action in 4-dimensions

$$S = -\frac{1}{2} \int d^4x \sqrt{-g} \, M_\star^2 \, R$$

- Ricci tensor $R_{\mu\nu}$ and Ricci scalar $R = g^{\mu\nu}R_{\mu\nu}$
- mass scale M_{\star} related to Newton's constant G_N : $M_{\star} = \left(\frac{1}{8\pi G_N}\right)^{1/2}$
- Variational calculus δS leads to Einstein equation
 - Metric tensor $g_{\mu\nu}$
 - Energy-momentum tensor $T_{\mu\nu}$
 - Cosmological constant Λ

$$R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R = 8\pi G_N T_{\mu\nu} - \Lambda g_{\mu\nu}$$

Kaluza-Klein theory

- Gravity and electromagnetism in 5-dim. space-time with one dim. compactified on circle of circumference L Kaluza 1919; Klein 1926
- Einstein-Hilbert action $S = \int d^5x \sqrt{-g^{(5)}} M_{\star}^3 R^{(5)}$
 - metric $g_{MN}^{(5)}$ on $R_4 \otimes S^1$ expanded $g_{MN} = \eta_{MN} + h_{MN}/(2M_{\star}^{3/2})$
 - five-dimensional graviton h_{MN} contains five physical components
- Massless fields
 - 4-dimensional (4 d) graviton $h_{\mu\nu}$, massless vector field $A_{\mu5}$ and massless scalar field ϕ $\begin{pmatrix} h_{\mu\nu} & A_{\mu5} \\ A_{5\mu} & \phi \end{pmatrix}$
- Action comprises 4-dimensional gravity plus a gauge field
 - coupling strength $g^2 = (M_{\star}L)^{-1}$ (ϕ with gravitational couplings only)

$$\int d^4 x (M_{\star}^3 L) R^{(4)} - \frac{1}{4} F_{\mu\nu} F^{\mu\nu} + \frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi$$

Kaluza-Klein theory

- Original Kaluza-Klein proposal suffers from three problems
 - gravitationally coupled scalar field ϕ postulated
 - gauge field strength of order one only for $L^{-1} \sim M_{\star}$
 - no chiral fermions exist in 5-dim. space-time ("doubling" of massless fermions)

Large extra dimensions

- Large extra dimensions at the millimeter scale (ADD model) Arkani-Hamed, Dimopoulos, Dvali '98
 - all SM fields confined to 4-dim. brane
 - only gravity propagates in space of extra dimensions (the bulk)
 - fundamental Planck scale as perceived in bulk similar in magnitude to electroweak scale (cf. hierarchy problem)
- Fundamental Planck scale M_{Planck} lowered to electroweak scale by additional small space dim. (RS model) Randall, Sundrum '98
 - large degree of spatial curvature
 - exponential "warp factor" in metric of RS model makes $M_{\rm Planck}$ (near the electroweak scale) appear to 4-dim. observer on our brane to be much higher (cf. hierarchy problem)
- Universal Extra Dimensions (UED) Appelquist, Cheng, Dobrescu '01
 - all SM fields propagate through all of the dimensions of space (no confinemet to a particular brane)

ADD cartoon

- The world according to ADD
- $R_4 \times M_n$ spacetime with *n*-dim. compact manifold M_n
 - 3-brane for Standard Model (3 + 1)-dimensional spacetime
 - extra compact spatial dimensions of radius $\sim r$

ADD models

• Action for brane and bulk separated $S = S_{\text{bulk}} + S_{\text{brane}}$

Bulk

• 4 + n-dimensional Einstein-Hilbert action

$$S_{\text{bulk}} = -\frac{1}{2} \int d^{4+n} x \sqrt{-g^{(4+n)}} M_{\star}^{n+2} R^{(4+n)}$$

• line element $ds^2 = g_{MN}^{(4+n)} dx^M dx^N$

- Extra dimensions in higher dimensional action "integrated out"
 - expansion of g_{MN} about flat spacetime with fluctuations $h_{\mu\nu}$
- Line element $ds^2 = (\eta_{\mu\nu} + h_{\mu\nu}) dx^{\mu} dx^{\nu} r^2 d\Omega_{(n)}$
 - metric $d\Omega_{(n)}$ on *n*-dimensional torus
- Factorization of metric
 - effective replacements of (4 + n)-dim. metric and Ricci scalar

$$\sqrt{-g^{(4+n)}} \rightarrow \sqrt{-g^{(4)}}$$

$$R^{(4+n)} \rightarrow R^{(4)}$$

Physics at LHC – p.11

ADD models

● Effective 4-dim. action for bulk

$$S_{\text{bulk}} = -\frac{1}{2} M_{\star}^{n+2} \int d^{4+n} x \sqrt{-g^{(4+n)}} R^{(4+n)}$$
$$= -\frac{1}{2} M_{\star}^{n+2} \int d^{4} x \int d\Omega_{(n)} r^{n} \sqrt{-g^{(4)}} R^{(4)}$$
$$= -\frac{1}{2} M_{\star}^{n+2} (2\pi r)^{n} \int d^{4} x \sqrt{-g^{(4)}} R^{(4)}$$

Famous result for 4-dim. Planck scale

$$M_{\rm Pl}^2 = M_\star^{n+2} (2\pi r)^n$$

• $M_{\rm Pl}$ depended on number *n* and radius *r* of extra dimensions

Deviations from Newtonian Gravity

- Gauss's law in (4 + n) dimensions
 - two masses m_1, m_2 feel gravitational potential

•
$$r' \ll r$$

 $V(r') = -G_N^{(4+n)} \frac{m_1 m_2}{r'^{1+n}}, \qquad (r' \ll r)$

- $r' \gg r$ (gravitational flux cannot penetrate in extra dimensions)
- usual 1/r' potential is obtained $V(r') = -G_N \frac{m_1 m_2}{r'}, \qquad (r' \gg r)$
- D-dim. Newton's constant G_N^D related to D-dim. Planck scale
 - $M_{\star} = \left(\frac{1}{8\pi G_N^D}\right)^{1/(D-2)}$
 - effective 4-dimensional M_{Planck}

$$M_{\rm Pl}^2 \sim \left(M_{\rm Pl(4+n)}\right)^{n+2} r^n$$

Limits on numbers of dimension

Assume equal-sized extra dimensions

$$r = \frac{1}{2\pi} \left(\frac{M_{\rm Pl}^2}{M_{\star}^{n+2}} \right)^{1/n}$$

Require M_{\star} close to weak scale for solving the hierarchy problem

• for $M_{\star} = 1$ TeV expect $\mathcal{O}(1)$ deviations from Newtonian gravity

number of extra dimensions	r
n = 1	$\sim 10^{12}~{ m m}$
n=2	$\sim 10^{-3} \mathrm{~m}$
n = 3	$\sim 10^{-8} \text{ m}$
n=6	$\sim 10^{-11}~{ m m}$

Upshot

- gravitational force comparable to gauge forces at weak scale
- gravity is brought done to weak scale
- 4-dim. Planck scale is not fundamental scale

Sven-Olaf Moch

Gravity at short distances

- Search for deviations of gravity potential in submillimeter range $V = -\frac{G_N m_1 m_2}{r_{12}} \left[1 + \alpha \exp(-r_{12}/\lambda) \right]$
 - restrictions on ADD model with 2 extra dimensions (best sensitivity: Univ. of Washington experiment Adelberger et al. '01-'08)
 - compilation of experimental limits Long, Price '03

Sven-Olaf Moch

Universal extra dimensions

Motivation

- UED models are remarkably simple
 - flat metric with one or more compact extra dimensions
- UED models allow for stable proton (at times $\tau_p \ge 10^{33}$ yrs) (unlike RS and ADD models)
 - global symmetries in UED limit higher dimensional operators for proton decay
- Dark matter candidate in UED models
 - LKP (lightest Kaluza-Klein particle) is neutral and absolutely stable
- UED models avoid constraints from electroweak precision tests of SM
 - e.g. absence of FCNC, lepton number violating interactions, decays $B \rightarrow X_s \gamma$, ...
- UED testable at terascale collider experiments

Orbifolds

- Compactifications of manifolds
 - e.g. $\mathbf{R}_1 \rightarrow \mathbf{S}_1$ (identification of end-points in \mathbf{R}_1)
- Orbifolds are quotient spaces of manifold M and discrete group G
 - ${\scriptstyle { \bullet } }$ there exist additional fixed points on ${\bf M}$ invariant under ${\bf G}$
 - example: $\mathbf{R}_1 \rightarrow \mathbf{S}_1/\mathbf{Z}_2$
- String theory relies on compactification (e.g. toroidal orbifold constructions T_2/Z_3)

Orbifolds for UED models

- Complication: fermions in D > 4 are non-chiral
- Orbifold compactification for chiral fermions to exist
- Phenomenology in UED models typically restricted to 5-dimensions
 - 5-dim. case with S_1/Z_2 orbifold removes unwanted fermionic degrees of freedom

The Lagrangian

• Standard Model in 4 + D space-time dim.

- all SM fields can propagate in the extra (universal) dimensions
- compactification at a scale 1/R

$$\mathcal{L}(x^{\mu}) = \int d^{D}y \Big\{ -\sum_{i=1}^{3} \frac{1}{2\hat{g}_{i}^{2}} \operatorname{Tr} \Big[F_{i}^{AB}(x^{\mu}, y^{a}) F_{iAB}(x^{\mu}, y^{a}) \Big] + \\ + |(D_{\mu} + D_{3+a})H(x^{\mu}, y^{a})|^{2} + \mu^{2}H^{*}(x^{\mu}, y^{a})H(x^{\mu}, y^{a}) - \lambda \Big[H^{*}(x^{\mu}, y^{a})H(x^{\mu}, y^{a}) \Big]^{2} + \\ + i \left(\overline{Q}, \overline{u}, \overline{d}, \overline{L}, \overline{e} \right) (x^{\mu}, y^{a}) \left(\Gamma^{\mu}D_{\mu} + \Gamma^{3+a}D_{3+a} \right) (Q, u, d, L, e) (x^{\mu}, y^{a}) + \\ \Big[\overline{Q}(x^{\mu}, y^{a}) \left(\hat{\lambda}_{u} \ u(x^{\mu}, y^{a})i\sigma_{2}H^{*}(x^{\mu}, y^{a}) + \hat{\lambda}_{d} \ d(x^{\mu}, y^{a})H(x^{\mu}, y^{a}) \right) + \mathrm{H.c.} \Big] + \\ \Big[\overline{L}(x^{\mu}, y^{a})\hat{\lambda}_{e} \ e(x^{\mu}, y^{a})H(x^{\mu}, y^{a}) + \mathrm{H.c.} \Big].$$

$$(3)$$

In Eq. (3), the summation over fermion generations has been suppressed, and we indicate with F_i^{AB} the (4+D)-dimensional gauge field strengths associated with the $SU(3)_c \times SU(2)_W \times U(1)_Y$ gauge group. $D_\mu = \partial/\partial x^\mu - A_\mu$ and $D_{3+a} = \partial/\partial y^a - A_{3+a}$ are the covariant derivatives, with $A_A = -i \sum_{i=1}^3 \hat{g}_i \mathcal{A}_{Ai}^r T_i^r$ being the (4+D)-dimensional gauge fields, and \hat{g}_i the (4+D)dimensional gauge couplings. The latter, as well as the Yukawa matrices, $\hat{\lambda}_{u,d,e}$, have dimension $(\max s)^{-D/2}$. The symbols Q, u, d, L, e describe the (4+D)-dimensional fermions, whose zero modes correspond to the SM fermions. Capitalized letters indicate $SU(2)_W$ doublets, while lower case letters indicate $SU(2)_W$ singlets. The (4+D)-dimensional gamma matrices, Γ^A , are anticommuting $2^{K+2} \times 2^{K+2}$ matrices, where D = 2K if D is even, and D = 2K + 1 for odd D, satisfying the (4+d)-dimensional Clifford algebra $\{\Gamma^A, \Gamma^B\} = 2g^{AB}$. In particular, for the case of D = 1, one can set $\Gamma_\mu = \gamma_\mu$, and $\Gamma_4 = i\gamma_5$.

Sven-Olaf Moch

KK modes

decomposition of gauge/scalar fields in KK modes for 5D model

$$(H, \mathcal{A}_{\mu})(x^{\mu}, y) = \frac{1}{\sqrt{\pi R}} \Big[(H_0, \mathcal{A}_{\mu,0})(x_{\mu}) + \sqrt{2} \sum_{n=1}^{\infty} (H_n, \mathcal{A}_{\mu,n})(x_{\mu}) \cos\left(\frac{ny}{R}\right) \Big]$$
$$\mathcal{A}_5 = \sqrt{\frac{2}{\pi R}} \sum_{n=1}^{\infty} \mathcal{A}_{5,n}(x_{\mu}) \sin\left(\frac{ny}{R}\right)$$

- Two 5D fermion fields $\psi_{L,R}$ (left and right handed spinors)
- Construct SM fields from chiral projection of zero modes

$$\psi^{\rm SM} = P_L \psi_{L,0} + P_R \psi_{R,0}$$

$$\psi(x^{\mu}, y) = \frac{1}{\sqrt{\pi R}} \Big[\psi^{\text{SM}}(x^{\mu}) + \sqrt{2} \sum_{n=1}^{\infty} P_L \ \psi_{L,n}(x^{\mu}) \cos\left(\frac{ny}{R}\right) + P_R \ \psi_{R,n}(x^{\mu}) \sin\left(\frac{ny}{R}\right) \Big]$$
Sven-Olaf Moch
Physics at LHC - p.19

KK parity

- KK level of particle measures its momentum in extra dimension
- Orbifold compactification breaks translational invariance in extra dimension
 - KK-number is not conserved quantity
- KK parity (subgroup of KK-number conservation)
 - conservation of evenness or oddness of KK number in interaction e.g. 5-dim. case with S₁/Z₂ leaves KK parity as Z₂ symmetry (odd KK numbers charged)

KK parity

- KK level of particle measures its momentum in extra dimension
- Orbifold compactification breaks translational invariance in extra dimension
 - KK-number is not conserved quantity
- KK parity (subgroup of KK-number conservation)
 - conservation of *evenness* or *oddness* of KK number in interaction e.g. 5-dim. case with S_1/Z_2 leaves KK parity as Z_2 symmetry (odd KK numbers charged)
- Phenomenological consequences
 - pair-production of excited KK-modes in interactions
 - LKP is stable
 - similarity to R-parity in SUSY

Particle spectrum

- Spectrum of first level Kaluza-Klein states
 - effective mass $m^2_{X^{(n)}} = \frac{n^2}{R^2} + m^2_{X^{(0)}}$
 - compactification radius $R^{-1} = 500 \text{GeV}$

Particle decays

- KK decay chain for n = 1 with dominant (solid) and sub-dominant (dotted) transitions
 - heavier n = 1 states cascade decay into stable LKP $B^{(1)}$ under emission of soft SM particles
 - LKP escapes detection, leading to missing energy signature

LHC phenomenology

- Expected production rates strongly depend on compactification scale R^{-1}
 - assume minimal UED with $\Lambda R = 20$ (boundary couplings flavor-conserving, boundary terms vanish at cutoff Λ)
 - radiative corrections lift KK mass degeneracy
 - decay cascades terminate with stable LKP
 - generic missing energy signatures

Sven-Olaf Moch

LHC phenomenology

- Expected production rates strongly depend on compactification scale R^{-1}
 - assume minimal UED with ΛR = 20 (boundary couplings flavor-conserving, boundary terms vanish at cutoff Λ)
 - radiative corrections lift KK mass degeneracy
 - decay cascades terminate with stable LKP
 - generic missing energy signatures

Search here !

Collider signatures

- Feynman diagrams for LKP production
 - $B^{(1)}$ -quark scattering
 - $B^{(1)}$ -gluon scattering (through quark/KK-quark loop)

LHC: predominantly production of colored KK-particles

pair-production of KK quarks, KK gluons and KK top-quarks

LHC cross section

- Production cross section of KK quarks and KK gluons at LHC as function of compactification radius R^{-1}
 - separate contributions Macesanu, McMullen, Nandi '02
 - KK quark pairs
 - KK quark + KK gluon
 - KK gluon pairs
 - KK top pairs

LHC reach

- - Tevatron (blue) and at the LHC (red) for $\Lambda R = 20$ Cheng, Matchev, Schmaltz '02
- Reach contours correspond to 5σ excess (or observation of 5 signal events)

Sensitivity to PDFs

- Sensitivity of LHC dijet cross section to large extra dimensions Ferrag '04
 - large extra dimensions accelerate running of α_s as compactification scale M_c is approached
- PDF uncertainties
 - potential sensitivity to M_c reduced from 6 TeV to 2 TeV

 $M_c = 2$ TeV no PDF error

 $M_c = 2$ TeV with PDF error

UED vs. SUSY

- Bosonic supersymmetry? Getting fooled at LHC Cheng, Matchev, Schmaltz '02
- Common features of extra dimensions and supersymmetry
 - lightest new state is neutral and stable
 - collider signatures with missing transverse momentum (energy) plus jets/leptons
 - same couplings for the SM particles and their heavier counterparts

Differences

- KK first level states in UED have same spin as SM counterparts
 - SUSY partners have opposite spin
- Higgs sector of UED has different KK parity assignment than heavy Higgs bosons in MSSM (*H*, *A*, H^{\pm})
 - Higgs sectors in SUSY and UED share same gauge quantum numbers
 - UED Higgses more similar to SUSY higgsinos,
- UED feature higher level KK modes (unlike supersymmetry)

Spin correlations

- second level KK states
- $B^{(2)} Z^{(2)}$ di-resonance structure with $R^{-1} = 500$ GeV at LHC with L = 100 fb⁻¹

Datta, Kong, Matchev '05

- di-muon channel (left)
- di-electron channel (right)
- SM background (red)

Tevatron cross section

- Production cross section of KK quarks and KK gluons at Tevatron as function of compactification radius R^{-1}
 - run I $\sqrt{s} = 1.8$ TeV, run II $\sqrt{s} = 1.96$ TeV
 - channels: Macesanu, McMullen, Nandi '02
 KK quark pairs, KK quark + KK gluon KK gluon pairs, KK top pairs
 - Tevatron run II sensitivity limits

Randall-Sundrum models

RS cartoon

- The world according to RS
 - only gravity exists in the warped extra dimension
 - Standard Model confined to 3-brane
 - all dimensionful SM parameters scaled to the TeV scale

Randall-Sundrum models

- One extra spatial dimension (space S_1/Z_2) and "warped" five-dimensional geometry
 - "branes" extend infinitely in usual three spatial dimensions (sufficiently thin in warped direction)
- Metric non-factorizable

$$ds^2 = e^{-2kr_c\phi}\eta_{\mu\nu}dx^{\mu}dx^{\nu} + r_c^2d\phi^2$$

- "warp" factor in four-dimensional metric (rapidly changing function of additional dimension)
- coordinates x^{μ} in familiar four dimensions
- $0 \le \phi \le \pi$ parameter of extra dimension of radius r_c (S₁/Z₂ \longrightarrow identification of (x, ϕ) with $(x, -\phi)$)
- $k \sim \mathcal{O}(M_{\text{Planck}})$
- Upshot
 - four-dimensional mass scales related to five-dimensional input mass parameters and warp factor $e^{-2kr_c\phi}$

Action for RS models

- Orbifold fixed points at $\phi = 0, \pi$ support two 3-branes (boundaries of the five-dimensional spacetime)
 - 3-branes support (3+1)-dimensional field theories
 - classical action $S = S_{gravity} + S_{vis} + S_{hid}$
- Matter field Lagrangian
 - \bullet example a fundamental Higgs field with mass parameter v_0

$$S_{vis} \supset \int d^4x \sqrt{-g_{vis}} \{g_{vis}^{\mu
u} D_{\mu} H^{\dagger} D_{\nu} H - \lambda (|H|^2 - v_0^2)^2 \}$$

• Substitution of metric and rescaling of Higgs field $H \rightarrow e^{kr_c\pi}H$

$$S_{eff} \supset \int d^4x \sqrt{-\overline{g}} \{ \overline{g}^{\mu\nu} D_{\mu} H^{\dagger} D_{\nu} H - \lambda (|H|^2 - e^{-2kr_c \pi} v_0^2)^2 \}$$

- Upshot
 - physical scale set by symmetry-breaking scale $v \equiv e^{-kr_c\pi}v_0$
 - any mass parameter m_0 on visible 3-brane in fundamental higher-dim. theory corresponds physical mass $m \equiv e^{-kr_c\pi}m_0$

Resonances

- RS-I scenario predicts di-fermion or di-bosons resonances at LHC from KK gravitons
 - in RS-I coupling of each KK graviton mode is only suppressed by O(TeV) (unlike KK gravitons of ADD)
 - width of these resonances is controlled by ratio c = k/M
- Example: cross section for $e^+e^- \rightarrow \mu^+\mu^-$ including KK graviton exchange Hewett, Spiropulu '02

Top-quark invariant mass distristribution

• Invariant mass distribution of top-quark pair invariant $M_{t\bar{t}}$

- Left: the $t\bar{t}$ invariant mass spectrum at LHC with NLO electroweak corrections
- Right: s-channel graviton exchange in $t\bar{t}$ invariant mass spectrum at LHC Frederix, Maltoni '07
 - Kaluza-Klein resonances in RS model

Hadronic di-jets

Di-jet differential cross section for scattering $\operatorname{parton}_{i}(k_{1}) + \operatorname{parton}_{i}(k_{2}) \rightarrow \operatorname{parton}_{k}(k_{3}) + \operatorname{parton}_{l}(k_{4})$

$$\frac{d^3\sigma}{dy_3 dy_4 dp_t^2} = \frac{1}{16\pi s^2} \sum_{i,j,k,l=q,\bar{q},g} \frac{f_i(x_1)}{x_1} \frac{f_j(x_2)}{x_2} \overline{\sum} \frac{1}{1+\delta_{kl}} \left| \mathcal{A}(ij \to kl) \right|^2$$

• Example:
$$\hat{\sigma}^{ud}$$
 with

$$\overline{\sum} |\mathcal{A}|^2 = (4\pi\alpha_s)^2 \frac{4}{9} \frac{s^2 + u^2}{t^2} +$$

Kinematics in di-jet cms

• di-jet rapidity $y^* = \frac{y_3 - y_4}{2}$ determines cms scattering angle $\cos\theta^* = \frac{p_z^*}{E^*} = \frac{\sinh y^*}{\cosh y^*} = \tanh\left(\frac{y_3 - y_4}{2}\right)$ • di-jet invariant mass M_{JJ}^2 $dy_3 dy_4 dp_t^2 = \frac{1}{2} dx_1 dx_2 d\cos\theta^*$

Sven-Olaf Moch

Jets at Tevatron

- Di-jet invariant mass distribution
 - agreement with perturbative QCD over eight orders of magnitude
 - larger uncertainites for high M_{jj}^2

• Cross section σ^{ud} in di-jet cms kinematics

$$\frac{d\hat{\sigma}^{ud}}{d\cos\theta^*} = \frac{\pi\alpha_s^2}{2M_{JJ}^2} \frac{4}{9} \left[\frac{4 + (1 + \cos\theta^*)^2}{(1 - \cos\theta^*)^2} + \frac{4 + (1 - \cos\theta^*)^2}{(1 + \cos\theta^*)^2} \right]$$

• Small angles
$$\frac{d\hat{\sigma}^{ud}}{d\cos\theta^*} \sim \frac{1}{\sin^4(\theta^*/2)}$$
 (Rutherford)
• transform to $\chi = \frac{1+\cos\theta^*}{1-\cos\theta^*}$
• $\frac{d\hat{\sigma}^{ud}}{d\chi} \sim \text{const}$

Scalar colored particle (e.g. scalar gluon)

•
$$\frac{d\hat{\sigma}^{ud}}{d\cos\theta^*} \sim \text{const transforms to } \frac{d\hat{\sigma}^{ud}}{d\chi} \sim \frac{1}{(1+\chi)^2}$$

Quark substructure

Searches for quark sub-structure in di-jet angular correlations

Summary table

"Metric" for models with extra dimensions

	SM fields	gravity
ADD	confined to 3-brane	gravity acts on 3-brane and in bulk
RS	confined to 3-brane	gravity acts on 3-brane and in bulk (extra dimension with large curvature)
UED	propagate through all spacetime (not confined to particular brane)	propagates through all spacetime